| 研究生: |
周緯浩 Wei-Hao Chou |
|---|---|
| 論文名稱: |
二維光子晶體雙重共振腔的光輻射研究 |
| 指導教授: |
徐子民
Tzu-Min Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 光子晶體 、共振模態 、耦合強度 、微共振腔 |
| 外文關鍵詞: | resonant mode, coupling energy |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文對光子晶體L3共振腔、雙重L3共振腔的共振模態與光輻射特性進行研究。利用微光激發螢光(μ-PL)光譜對共振模態進行觀察,並以二維平面波展開法與三維有限時域差分法兩種模擬方式進行模擬。將實驗與模擬結果做比較,結果顯示若改變空氣孔柱半徑與晶格常數的比值(R/a),則共振波長會變化,也會產生新的共振模態。在雙重L3共振腔的μ-PL光譜中發現最長波長的兩個模態,其耦合強度隨著共振腔間的空氣孔柱排數(n)增加而減少。在目前各種微共振腔的研究結果中,n=1的雙重L3共振腔具有很高的耦合強度。在本實驗的結果中,品質因子約為790-1530,沒有發現如文獻所述[17]品質因子會隨耦合強度增加而減少的相對關係。在量子點薄片上製作光子晶體結構後,使得量子點的螢光在光輸入輸出曲線(對數關係曲線)中的斜率,A系列試片由1.12上升至1.53,B系列試片由1.32上升至1.81,推測是受到蕭克利-里德-霍爾復合(Shockley-Read-Hall recombination)影響。
In this thesis, the resonant modes and radiative properties of L3 cavity and double L3 cavity were studied. The resonant modes were observed by micro-photoluminescence(μ-PL) spectroscopy. Two kinds of simulations were used: two-dimensional plane wave expansion method (2D PWEM) and three-dimensional finite-difference time-domain method (3D FDTD method). Then the information of experiments and simulations were compared. The results show that the wavelength of each resonant mode is changed and a new resonant mode is generated if the ratio of air holes’ radius and lattice constant are changed. The coupling strength of the resonant modes of two longest wavelength in the spectrum of double L3 cavity is decreased as the number of air-hole layers increasing. Compared with the other microcavities has been reported, the coupling strength in 90 degree double L3 cavity with n=1 is extremely high. In this experiment, the observed quality factor is around 790-1530. The tendency that quality factor is higher with larger n [17] did not observed in this study. The slope in L-L curve (log-log scale) would be increased from 1.12 to 1.53 in A series and from 1.32 to 1.81 in B series after the photonic crystal structure being fabricated at quantum dots’ slab. It may be deduced by the Shockley-Read-Hall recombination.
參考資料
[1] E. M. Purcell “Spontaneous emission probabilities at radio frequencies”, Phys. Rev. 69, 681(1946)
[2] Y. Akahane et al. “High-Q photonic nanocavity in a two-dimensional photonic crystal”, Nature 425, 944 (2003)
[3] A. R. A. Chalcraft et al. “Mode structure of the L3 photonic crystal cavity”, Appl. Phys. Let. 90, 241117(2007)
[4] J. P. Reithmaier et al. “Strong coupling in a single quantum dot-semiconductor microcavity system”, Nature 432, 197(2004)
[5] T. Yoshie et al. “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity”, Nature 432, 200(2004)
[6] W. -H. Chang et al. “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities”, Phys. Rev. Lett. 96, 117401(2006)
[7] K. Hennessy et al. “Quantum nature of a strongly coupled single quantum dot-cavity system”, Nature 445, 896(2007)
[8] A. Kress et al. “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals”, Phy. Rev. B 71, 241304 (2005)
[9] T. Asano et al. “Time-domain response of point-defect cavities in two-dimensional photonic crystal slabs using picoseconds light pulse”, Appl. Phys. Lett. 88, 151102(2006)
[10] S. Strauf et al. “Self-tuned quantum dot gain in photonic crystal lasers”, Phy. Rev. Lett. 96, 127404 (2006)
[11] M. Nomura et al. “Room temperature continuous-wave lasing in photonic crystal nanocavity”, Opt. Exp. 14, 6308 (2006)
[12] M. Nomura et al. “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor”, Phy. Rev. B 75, 195313 (2007)
[13] K. Tanabe et al. “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate”, Opt. Exp. 17, 7036 (2009)
[14] M. Nomura et al. “Photonic crystal nanocavity laser with a single quantum dot gain”, Opt. Exp. 17, 15975 (2009)
[15] A. Dousse et al. “Ultrabright source of entangled photon pairs”, Nature 466, 217(2010)
[16] H. Lin et al. “Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities”, Opt. Exp. 18, 23948(2010)
[17] A. R. A. Chalcraft et al. “Mode structure of coupled L3 photonic crystal cavities”, Opt. Exp. 19, 5670(2011)
[18] E. Yablonovitch “Inhibited spontaneous emission in solid-state physics and electronics”, Phy. Rev. Lett. 58, 2059 (1987)
[19] S. John “Strong localization of photons in certain disordered dielectric superlattices”, Phy. Rev. Lett. 58, 2486 (1987)
[20] 欒丕綱、陳啟昌, 「光子晶體-從蝴蝶翅膀到奈米光子學」, 五南圖書出版公司(2005)
[21] K. A. Atlasov et al. “Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities”, Opt. Exp. 16, 16255 (2008)
[22] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Antennas Propagation, 14, 302 (1966)
[23] 簡宏達, 「二維雙輸入雙輸出光子晶體分光器」, 國立中央大學光電科學研究所, 碩士論文(2005).
[24] 張高德, 「廣義光子晶體原件之研究與分析」, 國立中央大學光電科學研究所, 博士論文(2007)
[25] 黃家豪, 「二維光子晶體耦合共振腔之共振模態調變研究」, 國立中央大學物理學系, 碩士論文(2011)
[26] S. Vignolini, “Nanofluidic control of coupled photonic crystal resonators”, Appl. Phys. Lett. 96, 141114 (2010)
[27] G. Bjork et al. “Definition of a laser threshold”, Phy. Rev. A 50, 1675 (1994)
[28] M. Nomura et al. “Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation”, Appl. Phys, Lett. 89, 161111 (2006)
[29] M. Brunstein et al. “Radiation patterns from coupled photonic crystal nanocavities”, Appl. Phys. Lett. 99, 111101 (2011)
[30] K. A. Atlasov et al. “Large mode splitting and lasing in optimally coupled photonic-crystal microcavities”, Opt. Exp. 19, 2619 (2011)
[31] K. Nozaki et al. “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser”, Opt. Exp. 15, 7506(2007)
[32] 張文豪, 徐子民 「半導體量子光學」, 物理雙月刊, 28, 851, (2006)