跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃思綺
Ssu-Chi Huang
論文名稱: 科學模擬融入中學科學學習課程 歷程研究與對策
Integration of Scientific Simulation into Science Learning Courses for Junior High School Students and Related Strategies
指導教授: 劉晨鐘
Chen-Chun Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 網路學習科技研究所
Graduate Institute of Network Learning Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 107
中文關鍵詞: 電腦模擬科學學習概念比熱教學壓力教學浮力教學
外文關鍵詞: Computer simulation, scientific learning concepts, instruction in specific heat, instruction in pressure, instruction in buoyancy
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的教學方式著重教師講述,僵化的學習使多數學生在自然科的學習上感到困難。現今科學教育越來越重視以探究的學習方式培養科學素養,本研究是以學生為學習中心設計學習活動,在一般教室內利用電腦模擬科學實驗,讓學生以探究的方式學習自然科學。以國中二年級比熱、壓力、浮力三個單元為例,探討學生以探究方式學習科學的學習成效、學習歷程及科學學習概念改變情況。
    比熱單元學習成效前後無顯著差異。學生課堂參與度高,且在探究活動結束後教師總結時學生多能理解,但在後測時卻未能展現能力。於壓力單元學習單增加相關概念類題討論,並修正上課流程降低學生認知負荷。壓力單元學習成效有顯著提升。浮力單元學習成效前後無顯著差異,可能原因為該單元的科學概念較為複雜,學生缺乏對應的先備知識而影響學習成效。
    從學生學習單分析學習歷程,在比熱單元中多數學生缺乏探究式學習的經驗且對於科學模擬系統陌生,出現較多的數據資料蒐集錯誤。壓力單元中學生表現漸入佳境,探討科學問題時進行的探究步驟表現大致良好,且大多能得到正確結論。浮力單元在較簡易的科學概念探究中多數學生維持水準,但在較複雜的科學問題探究則因先備知識不足而影響實驗設計,致結論的表現較不理想。
    在三次探究課程活動後,學生科學學習概念在考試面向有顯著提升,其他面向則無顯著差異。透過訪談了解,學生認為在課堂中習得的知識有助於應試作答,透過課程活動學習科學概念能幫助考試得分。
    科學模擬融入中學科學學習課程需備有對應的事前準備,包含單元主題的挑選、模擬系統設計、課程規劃、硬體設備及完善的網路環境等,課堂中教師也需具備相對應的課堂管理能力以利科學模擬探究活動順利進行。


    A conventional instructional method focuses on teachers presenting facts. The rigid learning method makes students feel difficult when learning natural sciences. Currently, scientific education has increasingly emphasized the importance of using an inquiry-based learning method to foster scientific literacy. This study used a student-centered method to design learning activities and employed computers to simulate scientific experiments in a classroom, enabling students to learn natural sciences by using an inquiry-based method. This study also used three course units (i.e., specific heat, pressure, and buoyancy) for second-year junior high school students as examples to explore students’ learning effectiveness and processes and their changes in scientific learning concepts when adopting the inquiry-based learning.
    For the unit of specific heat, no significant difference in learning effectiveness was observed. Students actively participated in the class and understood the teacher’s conclusion at the end of an inquiry-based activity; however, the students did not present expected posttest results. For the unit of pressure, discussion about related concepts and topics was added to a learning sheet and learning procedures were modified to reduce students’ cognitive loads. The results showed that the learning effectiveness of the pressure unit significantly improved. Nevertheless, no significant difference in the learning effectiveness of the buoyancy unit was observed. This may be because the scientific concepts of this unit are complex and students did not have corresponding prior knowledge.
    By analyzing students’ learning processes according to the learning sheet, in the unit of specific heat, most students lacked inquiry-based learning experience, were unfamiliar with the scientific simulation system, leading to numerous errors regarding data collection. In the pressure unit, students gradually improved their performance, particularly for the inquiry steps on scientific questions, and most students obtained a correct conclusion. For the buoyancy unit, most students’ performance was satisfactory regarding inquiry into simple scientific concepts; however, for inquiry into complex scientific questions, their experimental design was influenced because of insufficient prior knowledge; consequently, students did not present satisfactory performance on conclusions.
    Following the three course units, students’ scientific learning concepts in the examination dimension significantly improved but no significant difference was observed in other dimensions. According to the interview results, students considered that knowledge acquired from classes helped them answer test questions and learning scientific concepts obtained through learning activities can help them score in a test.
    Integration of scientific simulation into scientific learning courses for junior high school students requires preparations in advance including selection of topics for a course unit, design of a simulation system, course design, required hardware, and excellent internet connections. In addition, the teacher needs to have a class management ability to help smoothly undertake scientific simulation and inquiry activities.

    目錄 摘要 I ABSTRACT II 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與問題 2 1.3 研究範圍與限制 3 第二章 文獻探討 4 2.1 電腦模擬 4 2.2 科學學習概念 7 第三章 研究方法 9 3.1 研究流程 9 3.2 研究設計 9 3.3 研究對象 10 3.4 教學情境 11 3.5 研究工具 11 3.5.1 科學模擬平台CoSci 11 3.5.2 科學學習概念問卷 13 3.6 資料蒐集與分析 14 3.6.1 學習成效評量試卷 14 3.6.2 學習單 14 3.6.3 科學學習概念問卷 16 3.6.4 事後訪談 17 第四章 研究一(比熱)結果 18 4.1 研究工具 18 4.1.1 比熱科學模擬 18 4.1.2 學習活動設計 21 4.1.3 學習成效評量試卷 21 4.2 研究結果 22 4.2.1 比熱單元學習成效 22 4.2.2 學生學習單分析 23 4.3 小結 27 第五章 研究二(壓力)結果 29 5.1 研究工具 29 5.1.1 壓力科學模擬 29 5.1.2 學習活動設計 30 5.1.3 學習成效評量試卷 32 5.2 研究結果 32 5.2.1 壓力單元學習成效 32 5.2.2 學生學習單分析 33 5.3 小結 38 第六章 研究三(浮力)研究結果 39 6.1 研究工具 39 6.1.1 浮力科學模擬 39 6.1.2 學習活動設計 41 6.1.3 學習成效評量試卷 42 6.2 研究結果 42 6.2.1 浮力單元學習成效 42 6.2.2 學生學習單分析 43 6.3 小結 48 第七章 學生科學學習概念 49 7.1 科學模擬融入探究課程後學生科學學習概念的差異 49 7.2 事後訪談 50 第八章 結論與建議 53 8.1 結論 53 8.2 未來建議 55 參考文獻 57 附錄一 科學學習概念前測問卷 61 附錄二 科學學習概念後測問卷 64 附錄三 比熱實驗學習單 67 附錄四 比熱單元學習成效評量前測試卷 70 附錄五 比熱單元學習成效評量後測試卷 73 附錄六 壓力實驗學習單 76 附錄七 壓力單元學習成效評量前測試卷 81 附錄八 壓力單元學習成效評量後測試卷 84 附錄九 浮力實驗學習單 87 附錄十 浮力單元學習成效評量前測試卷 91 附錄十一 浮力單元學習成效評量後測試卷 93

    參考文獻
    中文文獻
    李建邦(2012)。以自我調整學習理論探討國中理化低成就學生的學習困難。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化縣。
    林映苓(2013)。電腦模擬輔助學習中「人機互動」對認知負荷、學習歷程與學習成效的影響。國立中央大學學習與教學研究所碩士論文,未出版,桃園縣。
    林振欽(2010)。國中學生建模歷程之研究:以電腦模擬單擺實驗為例。國立高雄師範大學科學教育研究所博士論文,未出版,高雄市。
    施孟光(2012)。電腦模擬融入論證教學對九年級學生論證能力、科學推理能力與概念學習影響之行動研究。國立彰化師範大學科學教育研究所,未出版,彰化縣。
    教育部(2015)。國民中小學及普通型高級中等學校-自然科學領域課程綱要草案。取自https://www.naer.edu.tw/files/15-1000-10469,c1174-1.php?Lang=zh-tw
    陳俊亨(2014) 融入電腦模擬對七年級學生在遺傳單元之認知成就、學習動機與心流經驗的影響。國立臺灣師範大學科學教育研究所碩士論文,未出版,台北市。
    黃福坤(2006)。透過物理模擬動畫進行物理教學與學習-介紹簡易模擬動畫設計環境 Easy Java Simulation。物理雙月刊 (物理教育專輯),28(3),556-543。

    英文文獻
    Chan, T. W. (2013). Sharing sentiment and wearing a pair of ‘field spectacles’ to view classroom orchestration. Computers & Education, (69), 514-516.
    Chang, C. J., Liu, C. C., & Tsai, C. C. (2016). Supporting scientific explanations with drawings and narratives on tablet computers: An analysis of explanation patterns. The Asia-Pacific Education Researcher, 25(1), 173-184.
    Chang, C. J., Liu, C. C., Wu, Y. T., Chang, M. H., Chiang, S. F., Chiu, B. C., ... & Wu, S. W. (2016, January). Students' perceptions on problem solving with collaborative computer simulation. In 24th International Conference on Computers in Education, ICCE 2016 (pp. 166-168). Asia-Pacific Society for Computers in Education.
    Chiou, G. L., Lee, M. H., & Tsai, C. C. (2013). High school students’ approaches to learning physics with relationship to epistemic views on physics and conceptions of learning physics. Research in Science & Technological Education, 31(1), 1-15.
    Dillenbourg, P. (2013). Design for classroom orchestration. Computers & Education, 69, 485-492.
    Entwistle, N. J., & Peterson, E. R. (2004). Conceptions of learning and knowledge in higher education: Relationships with study behaviour and influences of learning environments. International journal of educational research, 41(6), 407-428.
    Ho, H. N. J., & Liang, J. C. (2015). The relationships among scientific epistemic beliefs, conceptions of learning science, and motivation of learning science: a study of Taiwan high school students. International Journal of Science Education, 37(16), 2688-2707.
    Lee, M. H., Johanson, R. E., & Tsai, C. C. (2008). Exploring Taiwanese high school students' conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92(2), 191-220.
    Lin, Y. H., Liang, J. C., & Tsai, C. C. (2012). Effects of different forms of physiology instruction on the development of students' conceptions of and approaches to science learning. Advances in physiology education, 36(1), 42-47.
    Peffer, M. E., Beckler, M. L., Schunn, C., Renken, M., & Revak, A. (2015). Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning. PloS one, 10(3), e0120638.
    Rutten, N., Van Joolingen, W. R., & Van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153.
    Sharples, A. P., Hughes, D. C., Deane, C. S., Saini, A., Selman, C., & Stewart, C. E. (2015). Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging cell, 14(4), 511-523.
    Sharples, M., Scanlon, E., Ainsworth, S., Anastopoulou, S., Collins, T., Crook, C., ... & O’Malley, C. (2015). Personal inquiry: Orchestrating science investigations within and beyond the classroom. Journal of the Learning Sciences, 24(2), 308-341.
    Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.
    Tsai, C. C. (2004). Conceptions of learning science among high school students in Taiwan: A phenomenographic analysis. International Journal of Science Education, 26(14), 1733-1750.
    Tsai, C. C., Ho, H. N. J., Liang, J. C., & Lin, H. M. (2011). Scientific epistemic beliefs, conceptions of learning science and self-efficacy of learning science among high school students. Learning and Instruction, 21(6), 757-769.

    QR CODE
    :::