跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊天行
Tian-Shing Yang
論文名稱: 飛行模擬系統中的動態載入式多重解析度地形模塑
Dynamic-loading Multiresolution Terrain Modeling in a Flight Simulation System
指導教授: 曾定章
Din-chang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 64
中文關鍵詞: 多重解析度模塑漸近式網格飛行模擬系統動態載入
外文關鍵詞: Multiresolution modeling, Progressive meshes, Flight simulation system, Dynamic loading
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 就飛行模擬系統而言,在低階個人電腦上即時的展示大區域地形模型是一個挑戰。在本論文的研究中,我們提出以漸進網格 (progressive meshes) 為基礎的動態載入式 (dynamic-loading) 視點相關 (view-dependent) 多重解析度模塑 (multiresolution modeling) 來達到這個目標。任意地形模型的漸近網格表示式可以定義出一序列的精細化記錄 (refinement records)。視點相關漸近網格的多重解析度模塑技術可以根據目前的視點參數 (view parameters) ,從這序列中選擇一些記錄來調整漸近網格中各區域的解析度。對於大區域地形模型而言,建構其漸近網格表示式是非常耗時的;而且通常記憶體並無法完全地容納全部的模型資料。因此,我們將大區域地形模型切分成許多矩形小地塊,並且動態地讀取所需的小地塊到記憶中來展示。另外,就飛行模擬的應用而言,我們建立一個控制介面來模擬戰鬥機的飛行,目的是要讓使用者感覺就如同他們正在地形上駕駛戰鬥機。


    The real-time rendering of large terrain models on a low-level personal computer is a challenge for flight simulation. In this paper, a view-dependent multiresolution terrain modeling based on the progressive mesh (PM) with dynamic loading technique is proposed to achieve the purpose. The PM representation defines a continuous sequence of different-resolution approximate meshes for an arbitrary triangle terrain model. The view-dependent PM is a framework for selectively refining an arbitrary PM according to the current view parameters. For a large terrain model, constructing PM representation is very time-consuming; moreover, it is generally impractical to load the whole terrain model into memory. Thus, we partition a large terrain model into blocks and then dynamically load the necessary terrain blocks into the memory for rendering. For the application of flight simulation, we build a control interface to simulate the fighter’s action; let users feel as they are aviating the fighter over the terrain.

    Contents Abstract ii Contents iii List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 System overview 2 1.2.1 Terrain modeling 3 1.2.2 View-dependent multiresolution modeling 3 1.2.3 Dynamic loading 4 1.2.4 Flight simulation interface 4 1.3 Thesis organization 5 Chapter 2 Related Works 7 2.1 Multiresolution models 7 2.1.1 Sequential multiresolution models 7 2.1.2 Hierarchical multiresolution models 10 2.2 Mesh simplification 12 2.2.1 Vertex decimation 12 2.2.2 Vertex clustering 14 Chapter 3 View-dependent Multiresolution Terrain Modeling 16 3.1 Progressive meshes 16 3.1.1 Progressive mesh representation 16 3.1.2 The sequence of edge collapse 18 3.2 View-dependent LOD control framework 20 3.2.1 Vertex hierarchy 21 3.2.2 Run-time refinement criteria 23 3.3 Geomorphs 28 3.3.1 Geomorph construction 28 3.3.2 Fold-back problems 29 3.4 Implementation of view-dependent progressive meshes 31 3.4.1 File format of view-dependent progressive meshes 31 3.4.2 Data structures for view-dependent progressive meshes 33 Chapter 4 Dynamic Loading 36 4.1 Block-based database construction 36 4.2 Boundary matching 38 4.3 Dynamic loading management 39 4.4 Solution of loading delay 40 Chapter 5 Flight Simulation Interface 43 5.1 The graphics environment 43 5.1.1 Graphics subsystem 43 5.1.2 Realistic virtual scene 44 5.2 The flight controller 46 5.2.1 Flight stick 46 5.2.2 Rudder pedal 46 5.2.3 Throttle 47 Chapter 6 Experiments 49 6.1 Progressive meshes 49 6.1.1 Construction and traversal time of progressive meshes 49 6.1.2 Demonstration of progressive meshes 51 6.2 View-dependent progressive meshes 55 6.3 Dynamic loading 56 6.3.1 Demonstration of dynamic loading 56 6.3.2 Performance evaluation 60 Chapter 7 Conclusions 62 References 64

    References
    [1] Ciampalini, A., P. Cignoni, C. Montani, and R. Scopigno, Multiresolution Decimation based on Global Error, Tech. Report C96-021, CNUCE-C.N.R., Pisa, Italy, Jul.1996.
    [2] Cohen-Or, D. and Y. Levanoni, “Temporal continuity of levels of detail in Delaunay triangulated terrain,” in Proc. Visualization’96, San Francisco, California, Oct. 27-Nov.1, 1996, pp.37-42.
    [3] Cohen, J., A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, and W. Wright, “Simplification envelops,” in Proc. SIGGRAPH’96, New Orleans, LA, Aug.4-9, 1996, pp.119-128.
    [4] De Floriani, L., “A pyramidal data structure for triangle-based surface description,” IEEE Computer Graphics & Applications, Vol.9, No.2, pp.67-78, 1989.
    [5] De Floriani, L. and E. Puppo, “Hierarchical triangulation for multiresolution surface description,” The Visual Computer, Vol.12, pp.317-345, 1996.
    [6] De Floriani, L. and E. Puppo, “Hierarchical triangulation for multiresolution surface description,” ACM Tran. on Graphics, Vol.14, No.4, pp.363-411, 1995.
    [7] Duchaineau, M., M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein, “ROAMing terrain: real-time optimally adapting meshes,” in Proc. Visualization’97, Oct.19-24, 1997, pp.81-88.
    [8] Erikson, C., Polygonal Simplification: An Overview, Tech. Report of Dept. Com. Sci., Univ. North Carolina at Chapel Hill, TR96-016, 1996.
    [9] Erikson, C. and D. Manocha, Simplification Culling of Static and Dynamic Scene Graphs. Tech. Report 98-009, Computer Science Dept., University of North Carolina, Chapel Hill, 1998.
    [10] Evans, W., D. Kirkpatric, and G. Townsend, Right Triangular Irregular Networks, Tech. Report TR97-09, University of Arizona, May 1997.
    [11] Garland, M. and P. S. Heckbert, “Multiresolution modeling for fast rendering,” in Proc. Graphics Interface’94, Banff, Alberta, Canada, May. 1994, pp.43-50.
    [12] Garland, M. and P. S. Heckbert, Fast Polygonal Approximation of Terrain and Height Fields, Tech. Report CMU-CS-95-181, Carnegie Mellon Univ., School of Computer Science, Sep. 1995.
    [13] Garland, M. and P. S. Heckbert., “Surface simplification using quadric error metrics,” in Proc. SIGGRAPH’97, Los Angeles, CA, Aug.3-8, 1997, pp.209-216.
    [14] Hoppe, H., T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh optimization,” in Proc. SIGGRAPH’93, Anaheim, CA, Aug.1-6, 1993, pp.19-26.
    [15] Hoppe, H., “Progressive meshes,” in Proc. SIGGRAPH’96, New Orleans, LA, Aug.4-9, 1996, pp.99-108.
    [16] Hoppe, H., “View-dependent refinement of progressive meshes,” in Proc. SIGGRAPH’97, Los Angeles, CA, Aug.3-8, 1997, pp.189-198.
    [17] Hoppe, H., Efficient Implementation of Progressive Meshes, Tech. Report of Microsoft Research, Microsoft Corporation, MSR-TR-98-02, Jan. 1998.
    [18] Hoppe, H. “Smooth view-dependent level-of-detail control and its application to terrain rendering,” in IEEE Visualization’98, Research Triangle Park, NC, Oct.18-23, 1998, pp.35-42.
    [19] Huang, C.-C., View-dependent Progressive-mesh Terrain Browsing with Dynamic Loading, Master’s thesis, Inst. of Computer Science and Information Engineer, Univ. of Central, Chung-li, Taiwan, 1999.
    [20] Klein, R., “Multiresolution representations for surfaces meshes,” in Proc. SIGGRAPH’97, Los Angeles, CA, Aug.3-8, 1997, pp.1-19.
    [21] Klein, R., D. Cohen-Or, and T. Hüttner, “Incremental view-dependent multiresolution triangulation of terrain,” in Proc. Fifth Pacific Conf. Computer Graphics & Applications, Oct.13-16, 1997, pp.127-136.
    [22] Klein, R. and J. Krämer, “Building multiresolution models for fast interactive visualization,” in Proc. Spring Conf. Computer Graphics and its Applications, Bratislava, Slovakia, June 5-8, 1997, pp.57-66.
    [23] Lindstrom, P., D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner, “Real-time, continuous level of detail rendering of height fields,” in Proc. SIGGRAPH’96, New Orleans, LA, Aug.4-9, 1996, pp.109-118.
    [24] Luebke, D. and C. Erikson., “View-dependent simplification of arbitrary polygonal environments,” in Proc. SIGGRAPH’97, Los Angeles, CA, Aug.3-8, 1997, pp.199-208.
    [25] Puppo, E. and R. Scopigno, Simplification, LOD and Multiresolution Principle and Application, Tutorial Notes, Eurographics’97, 1997.
    [26] Rossignac, J., and P. Borrel, “Multiresolution 3D approximations for rendering complex scenes,” in Geometric Modeling in Computer Graphics: Methods and Applications, Springer Verlag, 1993, pp.455-465.
    [27] Samet, H., “The quadtree and related hierarchical data structures,” ACM Computing Surveys, Vol.16, No.2, pp.187-260, 1984.
    [28] Schroeder, W. J., J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” in Proc. SIGGRAPH’92, Vol.26, No.2, Chicago, IL, Jul.26-31, 1992, pp.65-70.
    [29] Turk, G., “Re-tiling polygonal surfaces,” in Proc. SIGGRAPH’92, Vol. 26, No.2, Chicago, IL, Jul.26-31, 1992, pp.55-64
    [30] Xia, J. C., J. Ei-Sana, and A. Varshney, “Adaptive real-time level-of-detail-based rendering for polygonal models,” IEEE Trans. on Visualization and Computer Graphics, Vol.3, No.2, pp.171-183, 1997.

    QR CODE
    :::