| 研究生: |
何瑞鎮 Ran-Zhen He |
|---|---|
| 論文名稱: |
HJM模型下之存續期間與動態免疫策略 |
| 指導教授: |
張傳章
Chuang-Chang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | HJM模型 、存續期間 、動態免疫策略 |
| 外文關鍵詞: | HJM Model, Duration, Dynamic immunization |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用存續期間進行免疫策略時,其前提假設為殖利率曲線水平且平行移動,此一假設很難與實際狀況相符;而且在投資期間內,市場利率隨時間而不斷的波動,投資組合的存續期間亦隨之變動,因此免疫法的避險績效往往無法達到要求,雖然透過調整(rebalance)持有比例得以改善,但仍須付出交易成本作為代價。本文以Bierwag(1996)定義二項隨機利率存續期間的方法定義HJM模型的存續期間,並利用此存續期間進行Gagnon & Johnson(1994)所提出之隨機利率動態免疫策略,以期能達到預期資金需求或報酬。而模擬分析將比較HJM存續期間與傳統Macaulay存續期間的不同;同時將動態免疫策略的結果與一般不做動態調整免疫策略的情況作一比較,以觀察避險效率的差別。
由模擬分析可知,水平的利率期間結構下,Macaulay存續期間與HJM存續期間差距不大,但非水平的情況下會有較明顯的差距,所以用Macaulay存續期間衡量利率風險可能會有誤差。動態免疫下的平均投資組合價值較不調整的情況更接近所設定的目標,且標準差亦較小。另外,進行動態免疫時,若投資組合包含到期期限與投資期限相同的債券時其避險效果會最好,而持有接近投資年限的債券,其避險效果會比持有長期債券好。
1. Black, F., E. Derman, and W. Toy “ A One Factor Model of Interest Rates and its Application to Treasury Bond Options” Financial Analysts Journal, January/February 1990, pp. 33-39.
2. Bierwag, G. O., “Duration Analysis” Cambridge, MA:Ballinger Publishing, 1987.
3. Bierwag,"Bond Returns, Discrete Stochastic Processes, and Duration” The Journal of financial Research, Fall 1987, pp. 191-209.
4. Bierwag,“The Ho-Lee Binomial Stochastic Process and Duration” Journal of Fixed income, September 1996, pp. 76-87.
5. Bierwag,G.O.,G. G. Kaufman, R. Schweitzer, and A. Toevs, “The Art of Risk Management in Bond Portfolios” Journal of Portfolio Management, spring 1981, pp. 27-36.
6. Cox, J. C., J. E. Ingersoll, and S. A. Ross “Duration and the Measurement of Basis Risk” Journal of Business, January 1979, pp. 51-61.
6. Cox, J. C., J. E. Ingersoll, and S. A. Ross “Duration and the Measurement of Basis Risk” Journal of Business, January 1979, pp. 51-61.
8. Gagnon, L. and L. D. Johnson, “Dynamic Immunization under Stochastic Interest Rates”, The Journal of Portfolio Management, Spring 1994, pp. 48-54.
8. Gagnon, L. and L. D. Johnson, “Dynamic Immunization under Stochastic Interest Rates”, The Journal of Portfolio Management, Spring 1994, pp. 48-54.
10.Health,D.,R.Jarrow,and A. Morton , “Contingent Claim Valuation with a Random Evolution of Interest Rates”, Review of Future Markets, November 1990, pp. 54-76.
11.Health,D.,R.Jarrow,and A. Morton , “Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation”, Econometrica, January 1992, pp.77-105.
12. Ho, T. and S. B. Lee, “Term Structure Movements and Pricing Interest Rate Contingent Claims”, Journal of Finance, December 1986, pp. 1011-1029.
13. Ingersoll, J. “Is Immunization Feasible? Evidence from the CRSP Data.” Innovations in Bond Portfolio Management, Greenwich Con.,1983, pp. 163-182.
14. Kalotay, A., G.O. Williams, and F. J. Fabozzi “ A Model for Valuing Bonds and Embedded Options” Financial Analysts Journal, June 1993, pp. 35-46.
15. Kelly, T. A. and D. C. Thurston “A New Class of Duration Measures” Economic Letter, 1995,pp. 371-375.
16. Moraleda, J. M. and C. F. Vorst “Pricing American Interest Rate Claims with Humped Volatility Models” Journal of Banking and Finance,1997,pp.1131-1157.
17. Ritchken, P., and L. Sankarasubramanian “Volatility Structures of Forward Rates and The Dynamics of The Term Structure”, Mathematical Finance, January 1995, pp. 55-72.
18. Ritchken, P., and L. Sankarasubramanian “Lattice Models for Pricing American Interest Rate Claims”, Journal of Finance, June 1995, pp. 719-737.