跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾莉雯
Li-wen Tseng
論文名稱: 科學模擬融入探究過程 對學生科學學習概念與科學學習方法之影響 —以浮力單元為例
Effect of Integrating Scientific Simulation with Inquiry Process upon Science Conception Learning and Approaches to Learning Science in Buoyancy
指導教授: 劉晨鐘
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 網路學習科技研究所
Graduate Institute of Network Learning Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 105
中文關鍵詞: 科學模擬科學探究科學學習概念科學學習方法
外文關鍵詞: Scientific simulation, Scientific inquiry, conceptions of learning science, approaches to learning science
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在以浮力單元為例,在教師與CoSci平台提供鷹架的協助下,以科學模擬融入探究的過程,引導學生建立浮力模型,探討科學模擬融入探究過程對學生學習成效、科學學習概念與科學學習方法的影響。
    本研究以準實驗研究法進行,以兩個八年級的班級學生為研究對象,在浮力單元實驗組以科學模擬融入探究過程,控制組以講述式教學為不同教學方式,研究前、後測以問卷收集數據後以ANCOVA分析,並以協同專家訪談與課後回饋,調查學生在活動前後科學學習概念與科學學習方法的影響,並以無母數統計法分析學生學習成效差異。
    研究結果包括如下:
    1. 採用科學模擬融入探究過程的學生在浮力單元學習成效與講述式教學學生並無顯著差異。
    2. 在科學學習概念上實驗組以記憶、計算與練習為學習看法的程度較低,以新的方式看事物的程度較控制組高。
    3. 在科學學習方法方面能促進實驗組學生深層動機、深層策略的表現,在淺層動機表現也較控制組表現較高,顯示實驗組學生科學學習方法仍受外在動機影響。


    Taking buoyancy for an example, with the help of scaffolding provided by teachers and CoSci system in this study, the researcher guides students to establish a buoyancy model by integrating scientific simulation into the process of inquiry, and explores the impact of integrating scientific simulation into the inquiry process on students' learning outcomes.
    In this study, the quasi-experimental research method was used to investigate two classes of eighth-grade students. In the experimental group, scientific simulation was integrated into the inquiry process. Oppositely, in the control group, conventional teaching was adopted as the different teaching method. Before and after the study, data were collected by questionnaires and analyzed by ANCOVA. Besides, the researcher investigated the effects of scientific learning concepts and methods before and after activities by applying collaborative expert interviews and after-class student feedback. Then, the study attemped to analyze the differences of students' learning outcomes with nonparametric statistical analysis.
    The main findings of this study were as following:
    1. In terms of learning buoyancy, there is no significant difference between two groups that using scientific simulation and conventional teaching.
    2. As for learning conceptions of science, the experimental group had a worse perception of memory, calculation and practice, but showed a better visual perception for observing things in new ways than the control group.
    3. In the part of approaches to learning science, scientific simulation can promote the performance of deep motivation and deep strategy in the experimental group; furthermore, the performance of the surface motivation is also comparatively better than that in the control group. It shows that students in the experimental group are still influenced by external motivation.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 viii 一、 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與問題 2 1.3 名詞解釋 3 1.3.1 浮力概念 3 1.3.2 科學模擬 3 1.3.3 科學模型 3 1.3.4 科學建模 3 1.3.5 科學探究 4 1.3.6 科學學習概念 4 1.3.7 科學學習方法 4 1.3.8 研究範圍與限制 4 二、 文獻探討 5 2.1 探究與探究教學 5 2.1.1 探究的意涵 5 2.1.2 探究教學 6 2.2 模型與科學建模 7 2.2.1 模型 7 2.2.2 科學建模 8 2.3 科學學習概念 10 2.4 科學學習方法 12 三、 研究設計與研究方法 15 3.1 研究流程 15 3.2 研究對象 16 3.3 教學情境 17 3.4 研究架構與研究設計 18 3.5 研究工具 19 3.5.1 浮力單元成效評量測驗 19 3.5.2 教學活動設計 20 3.5.3 CoSci平台 26 3.5.4 科學學習概念與科學學習方法問卷 26 3.5.5 科學模擬融入探究課程之課程回饋單 27 3.6 資料蒐集與分析 28 四、 研究結果與討論 29 4.1 學習成效分析比較 29 4.2 學生學習單分析 30 4.3 科學模擬融入探究過程對學生在科學學習觀點上的影響 33 4.3.1 科學模擬融入探究課程後對學生科學學習概念的影響 33 4.3.2 科學模擬融入探究課程後對學生科學學習方法的影響 40 4.4 事後訪談 44 4.5 科學模擬融入探究過程課程對學生感受與遭遇到的困境 48 五、 結論與建議 52 5.1 結論 52 5.2 建議 54 六、 參考文獻 55 附錄A科學模擬融入探究過程─浮力單元教案 62 附錄B科學模擬融入探究過程─浮力單元學習單 67 附錄C控制組浮力單元教案 77 附錄D控制組浮力單元學習單 79 附錄E浮力單元學習成效評量 前測 84 附錄F浮力單元學習成效評量 後測 85 附錄G理化學習概念問卷 86 附錄H理化學習方法問卷 89 附錄I浮力課程課後回饋單 91

    中文部分
    吳昆勇(2002)。阿基米得原理與引導式發現教學法對學生學習浮力概念的影響。國立臺灣師範大學科學教育研究所碩士論文,未出版,臺北市。
    李旻憲(2008)。以巢狀概念模式探究高中生之科學學習–科學認識觀、後設認知知覺、科學學習概念及其科學評量概念。國立臺灣師範大學地球科學系博士論文,未出版,臺北市。
    林振欽 (2010)。國中學生建模歷程之研究:以電腦模擬單擺實驗為例。國立高雄師範大學科學教育研究所博士論文,未出版,高雄市。
    邱美虹(2016)。科學模型與建模:科學模型、科學建模與建模能力。取自http://chemed.chemistry.org.tw/?p=13898
    邱美虹、劉俊庚(2008)。「從科學學習的觀點探討模型與建模能力」。科學教育月刊,(314),2-20。
    侯佳典(2008)。5E探究式學習環教學對國二學生浮力概念改變成效之研究。國立彰化師範大學物理學系碩士論文,未出版,彰化市。
    張志康、邱美虹(2009)。「建模能力分析指標的發展與應用-以電化學為例」。科學教育月刊,17(4),319-342。
    教育部(2015)。國民中小學及普通型高級中等學校-自然科學領域課程綱要草案。取自https://www.naer.edu.tw/files/15-1000-10469,c1174-1.php?Lang=zh-tw
    陳雪芳(2016)。CWISE網路科學探究式課程平台應用於生物課程對國中七年級學生科學概念與批判思考能力之影響。國立台北教育大學自然科學教育學系碩士論文,未出版,臺北市。
    陳慧珊(2012)。科學主修相關與非科學主修相關領域大學生的科學知識觀、科學學習概念及科學學習方法之探討。國立臺灣科技大學數位學習與教育研究所碩士論文,未出版,臺北市。
    喻鴻鈞(2015)。從現象分析學取向探討學生科學學習概念之研究。國立高雄師範大學科學教育研究所博士論文,未出版,高雄市。
    曾茂仁(2016)。探討建模本位探究教學於化學電池的學習成效與建模能力。國立台灣師範大學碩士論文,未出版,臺北市。
    黃文田(2013)。探討建模教學對八年級學生酸鹼概念發展與建模能力的影響。國立台灣師範大學科學教育研究所碩士論文,未出版,臺北市。
    黃文政(2010)。中學教師於網路科學探究課程的教學信念與教學實務之研究。國立高雄師範大學科學教育研究所碩士論文,未出版,高雄市。
    黃瑞龍 (2003)。電腦輔助學習在國中理化「浮力」單元教學之研究。國立彰化師範大學物理學系在職進修專班碩士論文,未出版,彰化市。
    溫采婷(2017)。科學模擬遊戲學習歷程之學習分析。國立中央大學網路學習科技研究所碩士論文,未出版,桃園市。
    熊文獻 (2008)。研究不同探究教學效能之國中數理教師其探究教學能力之展現。國立彰化師範大科學教育研究所學碩士論文,未出版,彰化市。
    劉宏文、張惠博 (2001)。「科學教育行政、教學與學習」。 科學教育研究與發展季刊,23,13-29。
    歐用生(1989)。教學方法的新趨勢(上)(中)(下)。教與愛,24-26 期。
    歐陽鍾仁(1996)。科學教育概論。台北市:五南圖書出版有限公司。
    蔡軒翔(2011)。以5E學習環融入類比橋對國中學生浮力單元概念改變之行動研究。國立彰化師範大學,彰化市。
    蔡執仲、段曉林和靳知勤(2007)。「巢狀探究教學模式對國二學生理化學習動機影響之探討」。科學教育學刊,15(2),119-114。
    賴俊文(2010)。探討建模教學對於八年級學生學習物質粒子概念之學習成效與建模能力之影響。國立台灣師範大學科學教育研究所碩士論文,未出版,臺北市。
    鐘建坪(2010)。 「引導式建模探究教學架構初探」。科學教育月刊,328,2-18。 
    英文部分
    Archer, A., Arca, M., & Sanmartí, N. (2007). Modeling as a teaching learning process for
    Bell, L. R., Smetana, L., & Binns, I (2005). Simplifying inquiry instruction: Assessing the inquiry level of classroom activities. The Science Teacher, 72(7), 30-33.
    Biggs, J. (1994). Approaches to learning: Nature and measurement of. In T. Husen & T. N. Postlethwaite (Eds.), The international encyclopedia of education (2nd ed., Vol. 1, pp. 319–322). Oxford: Pergamon.
    Buehl, M. M., & Alexander, P. A. (2001). Beliefs about academic knowledge. Educational Psychology Review, 13, 385-418.
    Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann.
    Chang, C.-J., Liu, C.-C., Wu, Y.-T., Chang, M.-H., Fan Chiang, S.-H., Chiu, B.-C., ...Chang, C.-K. (2016, Dec). Students’ Perceptions on Problem Solving with Collaborative Computer Simulation. Chen, W. et al. (Eds.) (2016). Proceedings of the 24th International Conference on Computers in Education. India: Asia-Pacific Society for Computers in Education.
    Chin, C. &; Brown, D. E. (2000). Learning in Science: A comparison of deep and surface approaches. Research in Science Teaching, 37(2), 109-138
    Clement, J. (1989). Learning via model construction and criticism. Handbook of creativity (pp. 341-381). Springer, Boston, MA.
    Craver, C. F.(2006). When mechanistic models explain. Synthese, 153(3),355-376.
    Duarte, A. M. (2007). Conceptions of learning and approaches to learning in Portuguese students. Higher Education, 54, 781-794.
    Duit, R., Roth, W. M., Komorek, M., & Wilbers, J. (2001). Fostering conceptual change by analogies—between Scylla and Charybdis. Learning and Instruction, 11(4), 283303
    Eklund-Myrskog, G. (1998). Students’ conceptions of learning in different educational contexts. Higher Education, 35, 299–316.
    Entwistle, N. J. & Ramsden, P. (1983). Understanding Student Learning. London: Croom Helm.
    Gerardi, H. (2017). Using Student Epistemologies of Modeling in Biology to Inform In-Class Teaching Practices.
    Gilbert, J. K., & Boulter, C. J. (1998).Learning science through models and modelling. In B. Fraser and K. Tobin (eds), International Handbook of Science Education (Netherlands: Kluwer), 52-66.
    Halloun, I. A. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 26(11), 1365-1378.
    Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Hournal of Physics, 55(5), 440-454.
    Hestenes, D. (1995). Modeling software for learning and doing physics. In Bernardini, C., Tarsitani, C., & Vincentini, M. (Eds.). Thinking physics for teaching. 25-66. New York: Plenum.
    Justi, R. & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24,369-387.
    Kember, D., Biggs, J., & Leung, D. Y. (2004). Examining the multidimensionality of approaches to learning through the development of a revised version of the Learning Process Questionnaire. British Journal of Educational Psychology, 74(2), 261-279.
    Lee, M.-H., Johanson, R. E., & Tsai, C.-C. (2008). Exploring Taiwanese high school students’ conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92, 191-220.
    Louca, L., & Zacharia, Z.C.(2008). The use of computer-based programming environments as computer modeling tools in early science education: The cases of textual and graphical program languages. International Journal of Science Education, 30(3), 287-323.
    Marshall, D., Summer, M., & Woolnough, B. (1999). Students’ conceptions of learning in an engineering context. Higher Education, 38, 291-309.
    Marton, F. (1983). Beyond individual differences. Education Psychology, 3, 289-303.
    Marton, F., Dall’Alba, G., &; Beaty, E. (1993). Conceptions of learning. International Journal of Educational Research, 19, 277-299.
    National Research Council. (1996). National science education standards. Washington, DC: National Academy of Sciences.
    Saari, H. & Viiri, F. (2003). A research-based teaching sequence for teaching the concept of modeling to seventh-grade students. International Journal of Science Education, 25(11), 1333-1352.
    Sadi, O (2015) The analysis of high school students’ conceptions of learning in different domains, International Journal of Environmental and Science Education, 10(6) 813-827.
    Saljo, R. (1979). Learning in the learner’s perspective 1. Some Commonsense Conceptions. Gothenburg, Sweden: Institute of Education, University of Gothenburg.
    Schwarz, C., & White, B. (2005). Meta-modeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165 – 205.
    Seel, N. M. (2003). Model-centered learning and instruction. Technology, Instruction, Cognition and Learning, 1(1), 59-85.
    Tiberghien, A. (1994). Modeling as a basis for analyzing teaching- learning situations. Learning and Instruction, 4, 71-87.
    Tsai, C.-C. (2004). Conceptions of learning science among high school students in Taiwan: A phenomenographic analysis. International Journal of Science Education, 26, 1733-1750.
    understanding materials: A case study in primary education. Sci. Ed., 91, 398-418.
    Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172-223

    QR CODE
    :::