| 研究生: |
林瑋 Wei Lin |
|---|---|
| 論文名稱: |
發展基於固體與氣體靶之雷射加速離子束及其診斷技術 Development of Laser-Accelerated Ion Beams and Diagnostics Using Solid and Gaseous Targets |
| 指導教授: |
白植豪
Chih-Hao Pai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 超強雷射 、雷射電漿加速器 、近臨界密度電漿 、CR39 固態核徑跡偵檢器 、湯木生拋物線能譜儀 |
| 外文關鍵詞: | Ultra-intense laser, Laser-plasma accelerator, Near-critical-density plasma, CR39 solid-state nuclear track detector, Thomson Parabola Spectrometer |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射驅動離子加速器能產生高能離子束之特性使其適用於研究氫硼 (p-B) 聚變反應。此類核融合反應的主要過程沒有中子的產生,且攜帶高能量的 α 粒子可直接轉換為電能。然而,如何高效率地將能量從雷射轉換至核反應過程中仍是一大挑戰。此外,為精確測量能量的產出,對離子束具有高靈敏度且精準的診斷系統是必須具備的。
本研究採用國立中央大學強場物理與超快技術實驗室中的百兆瓦雷射系統,針對數百萬電子伏特(MeV)離子束建立診斷系統。為能正確解析CR39固態核徑跡偵檢器上的離子資訊,本研究開發了一套基於物理模型的CR39凹坑檢測演算法。該演算法能夠從高密度及重疊的離子凹坑中準確地提取出凹坑形態資訊。
此外,本研究設計並建構了一座自製的湯姆森拋物光譜儀,並對P43螢光屏的響應函數進行校準。此校準過程利用從靶背鞘層加速(Target Normal Sheath Acceleration, TNSA)機制產生之離子束,結合柵欄狀的CR39結構進行測試,使得離子能譜能即時地線上診斷。
基於上述診斷技術的改良,本研究進一步探究以氣態靶材進行雷射驅動離子加速的可行性,以提升雷射與粒子間的能量轉換效率。我們透過雷射光暗影法(shadowgraph imaging)以及湯木生散射成像(Thomson scattering imaging)量測了被調製的電漿分佈,也同時以CR39觀測到能量介於 450-900 keV 的質子。這些研究成果將為未來相關的實驗研究奠定了重要基礎。
Laser-driven ion accelerators provide a compact and efficient approach to generating energetic ion beams, making them suitable for proton-boron (p-B) fusion reactions. The reactants for this aneutronic fusion process are naturally abundant, and the resulting alpha particles can be directly converted into electrical energy. However, achieving efficient energy transfer from the laser to the fusion process remains a significant challenge. Furthermore, sensitive and reliable ion diagnostic systems are essential for accurately measuring energy production.
In this thesis, diagnostic systems for multi-MeV ion beams produced by a 100-TW Ti:sapphire laser system are investigated. To ensure precise ion measurements with CR39 solid-state nuclear track detectors, a physics-based CR39 pit-detection algorithm is developed. This algorithm extracts pit geometry from etched CR39, performing exceptionally well in regions with high density and overlapping tracks.
In addition, a Thomson Parabola Spectrometer utilizing a P43 scintillator is designed. The response function of the P43 scintillator was measured using multi-MeV proton beams generated from C-H foil targets via the Target Normal Sheath Acceleration (TNSA) mechanism, in combination with a customized CR39 structure for simultaneous track recording. This calibration improves the precision and accuracy of the Thomson Parabola Spectrometer in retrieving ion energy spectra.
Based on these capabilities of particle diagnostic tools, the feasibility of ion acceleration from gaseous targets was investigated to enhance laser-to-particle energy transfer efficiency. Tailored plasma structures generated by machining pulses were diagnosed using shadowgraph and Thomson scattering imaging, confirming proton acceleration with energies in the 450-900 keV range, as recorded by CR39 detectors. These results provide a foundation for future experiments to optimize laser-driven ion acceleration and advance progress in p-B fusion research.
[1] Z. Li, Y. Leng, and R. Li, “Further development of the short-pulse petawatt laser: trends, technologies, and bottlenecks,” Laser & Photonics Reviews, vol. 17, no. 1, p. 2100705, 2023.
[2] F. Albert, M.-E. Couprie, A. Debus, M. C. Downer, J. Faure, A. Flacco, L. A. Gizzi,
T. Grismayer, A. Huebl, C. Joshi, et al., “2020 roadmap on plasma accelerators,” New Journal of Physics, vol. 23, no. 3, p. 031101, 2021.
[3] C. Aniculaesei, T. Ha, S. Yoffe, L. Labun, S. Milton, E. McCary, M. M. Spinks, H. J. Quevedo, O. Z. Labun, R. Sain, et al., “The acceleration of a high-charge electron bunch to 10 gev in a 10-cm nanoparticle-assisted wakefield accelerator,” Matter and Radiation at Extremes, vol. 9, no. 1, 2024.
[4] T. Ziegler, I. Göthel, S. Assenbaum, C. Bernert, F.-E. Brack, T. E. Cowan, N. P. Dover,
L. Gaus, T. Kluge, S. Kraft, et al., “Laser-driven high-energy proton beams from cascaded acceleration regimes,” Nature Physics, vol. 20, no. 7, pp. 1211–1216, 2024.
[5] S. Bulanov and V. Khoroshkov, “Feasibility of using laser ion accelerators in proton ther- apy,” Plasma Physics Reports, vol. 28, pp. 453–456, 2002.
[6] S. Bulanov, T. Z. Esirkepov, V. Khoroshkov, A. Kuznetsov, and F. Pegoraro, “Oncological hadrontherapy with laser ion accelerators,” Physics Letters A, vol. 299, no. 2-3, pp. 240–247, 2002.
[7] M. Borghesi, D. Campbell, A. Schiavi, M. Haines, O. Willi, A. MacKinnon, P. Patel,
L. Gizzi, M. Galimberti, R. Clarke, et al., “Electric field detection in laser-plasma interaction experiments via the proton imaging technique,” Physics of Plasmas, vol. 9, no. 5, pp. 2214– 2220, 2002.
[8] M. Murakami, Y. Hishikawa, S. Miyajima, Y. Okazaki, K. L. Sutherland, M. Abe, S. V. Bulanov, H. Daido, T. Z. Esirkepov, J. Koga, et al., “Radiotherapy using a laser proton accelerator,” arXiv preprint arXiv:0804.3826, 2008.
[9] F. Belloni and K. Batani, “Multiplication processes in high-density h-11b fusion fuel,” Laser and Particle Beams, vol. 2022, p. e11, 2022.
[10] J. Bonvalet, P. Nicolai, D. Raffestin, E. D’humieres, D. Batani, V. Tikhonchuk,
V. Kantarelou, L. Giuffrida, M. Tosca, G. Korn, et al., “Energetic α-particle sources pro- duced through proton-boron reactions by high-energy high-intensity laser beams,” Physical Review E, vol. 103, no. 5, p. 053202, 2021.
[11] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Optics communications, vol. 55, no. 6, pp. 447–449, 1985.
[12] T. Tajima and J. M. Dawson, “Laser electron accelerator,” Physical review letters, vol. 43, no. 4, p. 267, 1979.
[13] R. Assmann, M. Weikum, T. Akhter, D. Alesini, A. Alexandrova, M. Anania, N. Andreev,
I. Andriyash, M. Artioli, A. Aschikhin, et al., “Eupraxia conceptual design report,” The European Physical Journal Special Topics, vol. 229, pp. 3675–4284, 2020.
[14] A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Reviews of Modern Physics, vol. 85, no. 2, pp. 751–793, 2013.
[15] R. Snavely, M. Key, S. Hatchett, T. Cowan, M. Roth, T. Phillips, M. Stoyer, E. Henry,
T. Sangster, M. Singh, et al., “Intense high-energy proton beams from petawatt-laser irra- diation of solids,” Physical review letters, vol. 85, no. 14, p. 2945, 2000.
[16] S. Wilks, A. Langdon, T. Cowan, M. Roth, M. Singh, S. Hatchett, M. Key, D. Pennington,
A. MacKinnon, and R. Snavely, “Energetic proton generation in ultra-intense laser–solid interactions,” Physics of plasmas, vol. 8, no. 2, pp. 542–549, 2001.
[17] S. Kar, K. Kakolee, B. Qiao, A. Macchi, M. Cerchez, D. Doria, M. Geissler, P. McKenna,
D. Neely, J. Osterholz, et al., “Ion acceleration in multispecies targets driven by intense laser radiation pressure,” Physical Review Letters, vol. 109, no. 18, p. 185006, 2012.
[18] A. Robinson, M. Zepf, S. Kar, R. Evans, and C. Bellei, “Radiation pressure acceleration of thin foils with circularly polarized laser pulses,” New journal of Physics, vol. 10, no. 1, p. 013021, 2008.
[19] T. M. Ostermayr, D. Haffa, P. Hilz, V. Pauw, K. Allinger, K.-U. Bamberg, P. Böhl,
C. Bömer, P. Bolton, F. Deutschmann, et al., “Proton acceleration by irradiation of isolated spheres with an intense laser pulse,” Physical Review E, vol. 94, no. 3, p. 033208, 2016.
[20] P. Hilz, T. Ostermayr, A. Huebl, V. Bagnoud, B. Borm, M. Bussmann, M. Gallei, J. Geb- hard, D. Haffa, J. Hartmann, et al., “Isolated proton bunch acceleration by a petawatt laser pulse,” Nature communications, vol. 9, no. 1, p. 423, 2018.
[21] Y. Shou, X. Wu, K. H. Pae, G.-E. Ahn, S. Y. Kim, S. H. Kim, J. W. Yoon, J. H. Sung, S. K. Lee, Z. Gong, et al., “Laser-driven proton acceleration beyond 100 mev by radiation pressure and coulomb repulsion in a conduction-restricted plasma,” Nature Communications, vol. 16, no. 1, p. 1487, 2025.
[22] D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R. A. Fonseca, L. O. Silva, W. B. Mori, and C. Joshi, “Collisionless shocks in laser-produced plasma generate monoenergetic high- energy proton beams,” Nature Physics, vol. 8, no. 1, pp. 95–99, 2012.
[23] D. Margarone, J. Bonvalet, L. Giuffrida, A. Morace, V. Kantarelou, M. Tosca, D. Raffestin,
P. Nicolai, A. Picciotto, Y. Abe, et al., “In-target proton–boron nuclear fusion using a pw- class laser,” Applied sciences, vol. 12, no. 3, p. 1444, 2022.
[24] C. Labaune, C. Baccou, S. Depierreux, C. Goyon, G. Loisel, V. Yahia, and J. Rafelski, “Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma,” Nature Communications, vol. 4, no. 1, p. 2506, 2013.
[25] L. Giuffrida, F. Belloni, D. Margarone, G. Petringa, G. Milluzzo, V. Scuderi, A. Velyhan,
M. Rosinski, A. Picciotto, M. Kucharik, et al., “High-current stream of energetic α particles from laser-driven proton-boron fusion,” Physical Review E, vol. 101, no. 1, p. 013204, 2020.
[26] D. Kong, S. Xu, Y. Shou, Y. Gao, Z. Mei, Z. Pan, Z. Liu, Z. Cao, Y. Liang, Z. Peng, et al., “Alpha-particle generation from h-11b fusion initiated by laser-accelerated boron ions,” Laser and Particle Beams, vol. 2022, p. e7, 2022.
[27] M. Dozières, G. Petrov, P. Forestier-Colleoni, P. Campbell, K. Krushelnick, A. Maksim- chuk, C. McGuffey, V. Kaymak, A. Pukhov, M. Capeluto, et al., “Optimization of laser- nanowire target interaction to increase the proton acceleration efficiency,” Plasma Physics and Controlled Fusion, vol. 61, no. 6, p. 065016, 2019.
[28] X. Ribeyre, R. Capdessus, J. Wheeler, E. d’Humières, and G. Mourou, “Multiscale study of high energy attosecond pulse interaction with matter and application to proton–boron fusion,” Scientific Reports, vol. 12, no. 1, p. 4665, 2022.
[29] N. E. Andreev, V. S. Popov, O. Rosmej, A. A. Kuzmin, A. Shaykin, E. A. Khazanov, A. Ko- tov, N. G. Borisenko, M. V. Starodubtsev, and A. A. Soloviev, “Efficiency improvement of the femtosecond laser source of superponderomotive electrons and x-ray radiation due to the use of near-critical density targets,” Quantum Electronics, vol. 51, no. 11, p. 1019, 2021.
[30] S. S. Bulanov, V. Y. Bychenkov, V. Chvykov, G. Kalinchenko, D. W. Litzenberg, T. Mat- suoka, A. G. Thomas, L. Willingale, V. Yanovsky, K. Krushelnick, et al., “Generation of gev protons from 1 pw laser interaction with near critical density targets,” Physics of plasmas, vol. 17, no. 4, 2010.
[31] T. Nakamura, S. V. Bulanov, T. Z. Esirkepov, and M. Kando, “High-energy ions from near- critical density plasmas via magnetic vortex acceleration,” Physical review letters, vol. 105, no. 13, p. 135002, 2010.
[32] J. Park, S. S. Bulanov, J. Bin, Q. Ji, S. Steinke, J.-L. Vay, C. G. Geddes, C. B. Schroeder,
W. P. Leemans, T. Schenkel, et al., “Ion acceleration in laser generated megatesla magnetic vortex,” Physics of Plasmas, vol. 26, no. 10, 2019.
[33] A. Sharma and C. Kamperidis, “High energy proton micro-bunches from a laser plasma accelerator,” Scientific Reports, vol. 9, no. 1, p. 13840, 2019.
[34] J. J. Thomson, “Bakerian lecture:—rays of positive electricity,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 89, no. 607, pp. 1–20, 1913.
[35] S.-L. Guo, B.-L. Chen, and S. Durrani, “Solid-state nuclear track detectors,” in Handbook of radioactivity analysis, pp. 307–407, Elsevier, 2020.
[36] K. Krushelnick, E. Clark, F. Beg, A. Dangor, Z. Najmudin, P. Norreys, M. Wei, and
M. Zepf, “High intensity laser-plasma sources of ions—physics and future applications,”
Plasma physics and controlled fusion, vol. 47, no. 12B, p. B451, 2005.
[37] A. Fews, “Fully automated image analysis of etched tracks in cr-39,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 71, no. 4, pp. 465–478, 1992.
[38] A. Azooz, S. Al-Nia’emi, and M. Al-Jubbori, “Empirical parameterization of cr-39 longi- tudinal track depth,” Radiation measurements, vol. 47, no. 1, pp. 67–72, 2012.
[39] M. Seimetz, P. Bellido, P. García, P. Mur, A. Iborra, A. Soriano, T. Hülber, J. García López,
M. d. C. Jiménez-Ramos, R. Lera, et al., “Spectral characterization of laser-accelerated protons with cr-39 nuclear track detector,” Review of Scientific Instruments, vol. 89, no. 2, 2018.
[40] D. Nikezic and K. Yu, “Computer program track_vision for simulating optical appearance of etched tracks in cr-39 nuclear track detectors,” Computer Physics Communications, vol. 178, no. 8, pp. 591–595, 2008.
[41] T. Kiefer, “Investigation of the laser-based target normal sheath acceleration (tnsa) process for high-energy ions. an analytical and numerical study,” 2014.
[42] P. Mora, “Plasma expansion into a vacuum,” Physical Review Letters, vol. 90, no. 18, p. 185002, 2003.
[43] P. Gibbon, Short pulse laser interactions with matter: an introduction. World Scientific, 2005.
[44] S. Wilks, W. Kruer, M. Tabak, and A. Langdon, “Absorption of ultra-intense laser pulses,”
Physical review letters, vol. 69, no. 9, p. 1383, 1992.
[45] F. Beg, A. Bell, A. Dangor, C. Danson, A. Fews, M. Glinsky, B. Hammel, P. Lee, P. Norreys, and M. Tatarakis, “A study of picosecond laser–solid interactions up to 1019 w cm- 2,” Physics of plasmas, vol. 4, no. 2, pp. 447–457, 1997.
[46] M. Haines, M. Wei, F. Beg, and R. Stephens, “Hot-electron temperature and laser-light absorption in fast ignition,” Physical Review Letters, vol. 102, no. 4, p. 045008, 2009.
[47] B. Qiao, X. Shen, H. He, Y. Xie, H. Zhang, C. Zhou, S. Zhu, and X. He, “Revisit on ion acceleration mechanisms in solid targets driven by intense laser pulses,” Plasma Physics and Controlled Fusion, vol. 61, no. 1, p. 014039, 2018.
[48] B. Qiao, S. Kar, M. Geissler, P. Gibbon, M. Zepf, and M. Borghesi, “Dominance of radiation pressure in ion acceleration with linearly polarized pulses<? format?> at intensities of 10 21 w cm-2,” Physical review letters, vol. 108, no. 11, p. 115002, 2012.
[49] B. Liu, J. Meyer-ter Vehn, K. Bamberg, W. Ma, J. Liu, X. He, X. Yan, and H. Ruhl, “Ion wave breaking acceleration,” Physical Review Accelerators and Beams, vol. 19, no. 7, p. 073401, 2016.
[50] H. Wang, C. Lin, Z. Sheng, B. Liu, S. Zhao, Z. Guo, Y. Lu, X. He, J. Chen, and X. Yan, “Laser shaping of a relativistic intense, short gaussian pulse by a plasma lens,” Physical review letters, vol. 107, no. 26, p. 265002, 2011.
[51] T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. J. Sircombe,
P. Gillies, R. Evans, H. Schmitz, A. Bell, et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Physics and Controlled Fusion, vol. 57, no. 11, p. 113001, 2015.
[52] T.-S. Hung, C.-H. Yang, J. Wang, S.-y. Chen, J.-Y. Lin, and H.-h. Chu, “A 110-tw multiple- beam laser system with a 5-tw wavelength-tunable auxiliary beam for versatile control of laser-plasma interaction,” Applied Physics B, vol. 117, pp. 1189–1200, 2014.
[53] C. Huang, W. Lu, M. Zhou, C. Clayton, C. Joshi, W. Mori, P. Muggli, S. Deng, E. Oz,
T. Katsouleas, et al., “Hosing instability in the blow-out regime for plasma-wakefield ac- celeration,” Physical review letters, vol. 99, no. 25, p. 255001, 2007.
[54] “Block diagram of the ncu 100-tw laser system.” https://hfp.phy.ncu.edu.tw/en/ research/facilities/. Accessed: 2025-04-29.
[55] J. Primot and N. Guérineau, “Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard,” Applied optics, vol. 39, no. 31, pp. 5715–5720, 2000.
[56] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interfer- ence and diffraction of light. Elsevier, 2013.
[57] T. A. S. Ltd, “Tasl image™ systems.” https://www.tasl.co.uk/tasl-image.php. Ac- cessed: 2025-04-29.
[58] A. Fasso, A. Ferrari, S. Roesler, J. Ranft, P. Sala, G. Battistoni, M. Campanella, F. Cerutti,
L. De Biaggi, E. Gadioli, et al., “The fluka code: present applications and future develop- ments,” arXiv preprint physics/0306162, 2003.
[59] G. Somogyi and S. Szalay, “Track-diameter kinetics in dielectric track detectors,” Nuclear Instruments and Methods, vol. 109, no. 2, pp. 211–232, 1973.
[60] B. Dörschel, D. Fülle, H. Hartmann, D. Hermsdorf, K. Kadner, and C. Radlach, “De- pendence of the etch rate ratio on the energy loss in proton irradiated cr-39 detectors and recalculation of etch pit parameters,” Radiation protection dosimetry, vol. 71, no. 2, pp. 99–106, 1997.
[61] R. Fleisher, P. Price, and R. Walker, “Nuclear tracks in solids: Principles and applications,”
Berkeley, 1975.
[62] S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai,
D. Axen, S. Banerjee, G. Barrand, et al., “Geant4—a simulation toolkit,” Nuclear instru- ments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, no. 3, pp. 250–303, 2003.
[63] P. V. Hough, “Method and means for recognizing complex patterns,” Dec. 18 1962. US Patent 3,069,654.
[64] N. Otsu et al., “A threshold selection method from gray-level histograms,” Automatica, vol. 11, no. 285-296, pp. 23–27, 1975.
[65] J. E. Bresenham, “Algorithm for computer control of a digital plotter,” in Seminal graphics: pioneering efforts that shaped the field, pp. 1–6, 1998.
[66] A. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least square fitting of ellipses,” IEEE Transactions on pattern analysis and machine intelligence, vol. 21, no. 5, pp. 476–480, 1999.
[67] J. B. Birks, “Scintillations from organic crystals: specific fluorescence and relative response to different radiations,” Proceedings of the Physical Society. Section A, vol. 64, no. 10, p. 874, 1951.
[68] B. Dromey, S. Kar, M. Zepf, and P. Foster, “The plasma mirror—a subpicosecond optical switch for ultrahigh power lasers,” Review of Scientific Instruments, vol. 75, no. 3, pp. 645– 649, 2004.
[69] K. Renuka, F. Becker, W. Ensinger, P. Forck, R. Haseitl, and B. Walasek-Hohne, “Imaging properties of scintillation screens for high energetic ion beams,” IEEE Transactions on Nuclear Science, vol. 59, no. 5, pp. 2301–2306, 2012.