| 研究生: |
盧彥均 Yen-Chun Lu |
|---|---|
| 論文名稱: |
氮化硼磊晶層之成長與分析 Growth and characterization of Boron Nitride epitaxial layer |
| 指導教授: |
賴昆佑
Kun-Yu Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 氮化硼 、磊晶 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,深紫外(deep ultraviolet, DUV, 波長 ≤ 290 nm)LED 的外部量子效率很難突破20%,遠低於可見光 LED 的水準,主因在於:DUV LED 的 P 型磊晶層必須同時具備高穿透率、高導電性,這是傳統 DUV LED 的材料—氮化鋁鎵(AlGaN)所欠缺的優點。而氮化硼(BN)兼具高能帶、低電洞活化能的特性,能使 DUV 波段的光不被氮化硼吸收,亦能大幅提升電洞濃度,增加導電性,是 DUV LED 所需的理想 P 型材料。此外,氮化硼的能帶高達 6 eV,能夠有效阻擋電子離開量子井。氮化硼的電洞活化能僅 30 meV,能提供大量電洞進入量子井,提升電洞電子對在量子井的複合數量,增強 DUV LED 的發光效率,也能降低操作電壓,減少熱能生成,有助於提升元件的使用壽命。上述的優點,使氮化硼成為目前 DUV LED 非常熱門的 P 型材料。
為了成長高品質的氮化硼,本研究利用有機金屬化學氣相沉積法製備氮化硼,架構為在藍寶石基板磊晶一層 1.5 微米的氮化鋁,之後再成長氮化硼磊晶層,透過改變五三比、三族載氣流量提升氮化硼的磊晶品質,再對氮化硼進行摻雜形成 P 型氮化硼。初步成果顯示:P 型氮化硼的穿透率及導電性均遠優於 P 型Al0.3Ga0.7N,在 DUV LED 應用上有極大的潛力。
Despite years of research efforts, external quantum efficiencies of deep ultraviolet (DUV, wavelength ≤ 290 nm) LED remain below 20 %. This is because the P-type material of DUV LED requires high transmittance and high conductivity, which is not achievable with the commonly used material, i.e. AlGaN. Boron nitride (BN) has the characteristics of high energy bandgap (~ 6 eV) and low hole activation energy (~ 30 meV), preventing the absorption of DUV photons in the p-type contact layer, while providing sufficient free hole concentration for the operation of DUV LED. In addition, the high energy bandgap of BN effectively blocks the electron overflow from quantum wells. The abundant holes injected from BN increase the luminous efficiency of DUV LED and decrease the turn-on voltage, extending the life of device operation. All of these promising traits make BN an attractive p-type material for DUV LED.
To achieve high-quality BN, we grew the binary compound by metal-organic chemical vapor deposition (MOCVD). A 1.5-μm-thick aluminum nitride was firstly grown on the sapphire substrate. BN epitaxial layer was then attained with varied VIII ratios and carrier gas flow rates, with the attempt to improve crystal qualities. Finally, BN was doped with Mg2+ to accomplish p-type conductivity. Preliminary results suggest that the transmission and conductivity of p-type BN are significantly superior to those of p-type Al0.3Ga0.7N, exhibiting great potential for DUV LED applications.
[1] Chuhei, O. and Ayato, N. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Matter 9, 1–20 (1997).
[2] S. Majety, et al. Semiconducting hexagonal boron nitride for deep ultraviolet photonics. Proc. of SPIE Vol. 8268, 82682R-1 (2012).
[3] D. W. He, Y. S. Zhao, L. Daemen, J. Qian, and T. D. Shen, Boron suboxide: As hard as cubic boron nitride. Appl. Phys. Lett. Vol. 81, No. 4, (2002).
[4] S. N. Monteiroa, A. L. D. Skury, M. G. Azevedo, G. S. Bobrovnitchii Cubic boron nitride competing with diamond as a superhard engineering material – an overview. J. Mater. Res. Technol. 2, [1] 68-74 (2013).
[5] Gianluca G. et al. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007).
[6] M. Bokdam, G. Brocks, M. I. Katsnelson, and P. J. Kelly Schottky barriers at hexagonal boron nitride/metal interfaces: A first-principles study. Phys. Rev. B 90, 085415 (2014).
[7] Dahal, R. et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material Appl. Phys. Lett. 98 211110-211110-3 (2011).
[8] H. X. Jiang, and J. Y. Lin, Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond. Sci. Technol. 29 084003 (2014).
[9] X. H. Jiang, et al. Reduction of the Mg acceptor activation energy in GaN, AlN, Al0.83Ga0.17N and MgGaδ-doping (AlN)5/(GaN)1: the strain effect. J. Phys. D: Appl. Phys. 48 475104 (2015).
[10] M. Soltani, R. Soref, T. Palacios, and D. Englund, AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range. Optics Express Vol. 24, No. 22, 25415-25423 (2016).
[11] R. A. Patil, et al. Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted photoluminescence. Nanoscale 00, 1-3, Supplementary. (2016).
[12] Y. Zhang, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823 (2009).
[13] Th. Böker, et al. “Band structure of MoS2 , MoSe2 , and a - MoTe2 : Angle-resolved photoelectron spectroscopy and ab initio calculations” Phys. Rev. B, Vol 64, 235305 (2001).
[14 ] L. Wang, et al. Negligible Environmental Sensitivity of Graphene in a Hexagonal Boron Nitride/Graphene/h-BN Sandwich Structure. ACS Nano. Vol. 6, No. 10, 9314–9319 (2012).
[15] Q. S. Paduano, M. Snure, and J. Shoaf Effect of V/III ratio on the growth of hexagonal boron nitride by MOCVD. Mater. Res. Soc. Symp. Proc. Vol. 1726 (2015).
[16] Chun-Pin Huang et.al. “Crystal Quality of AlN Film Improved by Low-Temperature Annealing at H2 and NH3 Atmosphere” manuscript
[17] D. H. Berns, and M. A. Cappelli, Cubic boron nitride synthesis in low-density supersonic plasma flows. Appl. Phys. Lett. 68, 2711 (1996).
[18] I. Konyashin, et al. The influence of excited hydrogen species on the surface state of sp2-hybridized boron nitride. Diamond Relat. Mater. 8 2053–2058 (1999).
[19] D. Y. Kim, et al. Pressure-Dependent Growth of Wafer-Scale Few-layer h‑BN by Metal−Organic Chemical Vapor Deposition Cryst. Growth Des. 17 (5), 2569–2575 (2017).
[20] M. G. Cheong, et al. Strong acceptor density and temperature dependences of thermal activation energy of acceptors in a Mg-doped GaN epilayer grown by metalorganic chemical-vapor deposition. Appl. Phys. Lett. Vol. 80, No. 6, (2002).