| 研究生: |
朱彥和 Yen-Ho Chu |
|---|---|
| 論文名稱: |
開發並優化矽基薄膜以應用於超淺接面與異質接面矽基太陽電池 Development and Optimization of Silicon-based Thin Films for Their Applications in Ultra-Shallow Junction and Heterojunction Silicon-based Solar Cells |
| 指導教授: |
張正陽
Jenq-Yang Chang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 217 |
| 中文關鍵詞: | 太陽電池 、矽 、超淺接面 、鈍化 、異質接面 |
| 外文關鍵詞: | Solar cell, Silicon, Ultra Shallow Junction, passivation, heterojunction |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於傳統的矽晶太陽電池,通常使用擴散製程進行硼原子或磷原子的摻雜且其擴散深度往往厚於0.5 μm,導致介面不明顯及使光電流降低。因此在本論文中,擁有超淺摻雜陡峭接面的摻雜磊晶矽薄膜將被開發研究。此外,為了加以了解矽晶鈍化機制及降低設備成本考量,我們使用國內自主生產的電漿輔助化學氣相沈積法沉積鈍化薄膜並進行其鈍化成效研究。因此,在本論文中主要的目標為開發並優化矽基薄膜並更進一步的在低製程溫度中應用於新發展的超淺接面矽晶太陽電池與矽異質接面太陽電池,我們使用電子迴旋共振化學氣相沈積法沉積的高品質硼摻雜磊晶矽薄膜作為超淺接面矽晶太陽電池之射極層以能獲得高短路電流,因得助於電子迴旋共振化學氣相沈積法擁有以下幾項優點及特性(1)屬高密度電漿;(2)低製程壓力;(3)高效氣體使用率。此外,亦將使用國內所生產的電漿輔助化學氣相沈積系統進行優質鈍化薄膜製程與矽異質接面電池之研究中。
為了實現如同傳統矽晶同質接面紫外太陽電池高藍光頻譜量子響應之目標,我們使用電子迴旋共振化學氣相沈積法沉積低吸收係數與陡峭超淺摻雜輪廓之高品質硼摻雜磊晶矽薄膜,由於高階游離率的特性因此電子迴旋共振化學氣相沈積法相當適合用於沉積磊晶薄膜,使得能在低溫140 °C時藉由沉積高品質硼摻雜磊晶矽薄膜實現超淺摻雜陡峭接面(< 30 nm),此高品質硼摻雜磊晶矽薄膜已經由高解析度穿透式電子顯微鏡與二次離子質譜儀已做確認,在超薄厚度(25 nm)下可得低薄膜片電阻(< 304 Ω/sq)。對於超淺接面矽晶太陽電池而言,我們製作其結構為Ag/Ti/ITO/epi-Si(p)/c-Si(n)/μc-Si:H(n)/ ITO/Ti/Ag的太陽電池於n型CZ矽基板上,研究中我們發現到電池的開路電壓強烈的受薄膜內載子摻雜濃度所影響,在沒有進一步的鈍化製程使用下,電池的開路電壓界於560 mV至600 mV之間,但最重要的一點是,相當優異的高短路電流密度(41.35 mA/cm2)能在低成長溫度且簡單製程條件下被實現,此超淺接面矽晶太陽電池研究成果中,在n型粗糙化CZ矽基板(200 μm)可獲得轉換效率17.16 %、填充因子74.74 %、開路電壓582 mV、短路電流密度39.44 mA/cm2之最佳太陽電池。此新型態超淺接面矽晶太陽電池在與國際其他研究團隊之比較下,本團隊的研究結果亦表現相當突出。
另一方面日本松下公司在2014年已成功達成其轉換效率高達24.7 %之矽異質接面太陽電池,儘管各研究者都明白矽晶表面鈍化技術是達成高效矽異質接面電池之關鍵技術之一,但其表面鈍化之機制與如何能有效沉積優異的高品質鈍化薄膜依舊呈現相對困難。因此,為了能進一步的了解與發展薄膜鈍化技術,我們與國內的設備廠商合作並使用其自主生產的電漿輔助化學氣相沈積系統進行本質氫化非晶矽薄膜之沉積與研究。根據我們的研究結果,優異的高品質鈍化薄膜將出現於薄膜非晶相轉變為薄膜結晶相中間的過渡區間內,在此過度區間內之高品質鈍化薄膜擁有著低微結構參數、豐富的氫含量、與較高的光敏度等特性。研究中我們能獲得優異的有效載子生命週期4.7 ms、低表面複合速率2.98 cm/s、高暗喻開路電壓725 mV。對矽異質接面太陽電池而言,我們製作其結構為Ag/Ti/ITO/a-Si:H(p)/i/c-Si(n)/i/a-Si:H(n)/ITO/Ti/Ag的太陽電池於n型CZ矽基板上,並在完成太陽電池前,對電池前驅結構p/i/c-Si/i/n、n/i/c-Si/i/n、p/i/c-Si/i/p進行有效載子生命週期之量測監控,研究中發現使用電子迴旋共振化學氣相沈積法所沉積之硼摻雜射極層將導致有效載子生命週期衰減,因此改採用漸變式沉積功率法(150 W~1800 W)以防止有效載子生命週期之衰減與同時維持射極層之電性需求,除了進行優化矽異質接面太陽電池外,同時我們亦導入超薄型矽基板(50 μm)進行相關研究。於矽異質接面太陽電池研究成果中,在n型粗糙化CZ矽基板(200 μm)可獲得轉換效率17.26 %、填充因子71.75 %、開路電壓660 mV、短路電流密度36.71 mA/cm2之最佳太陽電池;在n型平面CZ矽基板(50 μm)可獲得轉換效率12.46 %、填充因子65.40 %、開路電壓651 mV、短路電流密度29.28 mA/cm2之最佳太陽電池。比較於國內學術界中相關矽異質接面太陽電池之研究,本團隊的研究結果亦表現相當突出。
此外,除了上述所提及之硼摻雜磊晶矽薄膜與本質氫化非晶矽薄膜外,為了進一步達到高效太陽電池之目的,擁有著低吸收係數與寬能隙之替代性新材料硼摻雜微晶氫化氧化矽薄膜與本質氫化非晶氧化矽薄膜在本論文中亦將被研究與開發,研究成果中可獲得寬能隙1.83 eV之低吸收係數硼摻雜微晶氫化氧化矽與有效載子生命週期達800 μs之低吸收係數本質氫化非晶氧化矽薄膜。
For conventional c-Si solar cells, the doping profile of boron or phosphorous is usually more than 0.5 μm depth by diffusion process, hence the doped epi-Si thin films with abrupt ultra-shallow doping profile were investigated in this thesis. Furthermore, in order to understanding the mechanism of passivation technique, passivation thin films deposited by domestic PECVD was developed. Therefore, the main focus of this thesis is the development and optimization of silicon-based thin films for further applications in newly developed ultra-shallow junction (USJ) Si solar cells and silicon heterojunction (SHJ) solar cells at low substrate temperature. The high Jsc can be obtained by the new type USJ Si solar cells with high quality boron-doped epitaxial silicon (epi-Si) emitter deposited by ECRCVD because the ECRCVD has advantages such as (i) high plasma density of 1012cm−3, (ii) low working pressure, and (iii) efficient gas utilization due to high degree of dissociation. Furthermore, the domestic PECVD is involved in the excellent passivation process for the fabrication of SHJ solar cells.
In order to achieve the objective as same as the conventional c-Si homojunction solar cells with high blue response of the quantum efficiency, the high quality boron-doped epi-Si thin films with low absorption coefficient and abrupt ultra-shallow doping profile were prepared by ECRCVD. The ECRCVD is appropriate for the deposition of epitaxial thin films due to the high degree of dissociation. For conventional c-Si solar cells, the doping profile of boron or phosphorous usually is more than 0.5 μm depth by high temperature diffusion process. Compare with the conventional diffusion process, we can obtain the abrupt ultra-shallow doping profile (< 30 nm) by depositing the high quality boron-doped epi-Si thin film at low temperature (140 °C). The high quality boron-doped epi-Si thin film had been confirmed by HRTEM and SIMS. And the low sheet resistances (< 304 Ω/sq) for quite low thicknesses (25 nm) had been demonstrated. For USJ Si solar cells, the solar cell structure of Ag/Ti/ITO/epi-Si(p)/c-Si(n)/μc-Si:H(n)/ ITO/Ti/Ag was fabricated on n-type c-Si substrate. We find that the Voc is strongly affected by carrier concentration. The Voc of solar cells was obtained in the range between 560 mV and 600 mV without further passivation treatment. Most important of all, outstanding performance of high Jsc 41.35 mA/cm2 can be obtained with this simple process and low deposition temperature. Our best USJ Si solar cells on 200 μm n-type textured CZ c-Si wafer was obtained with an efficiency of 17.16 %, FF = 74.74 %, Voc = 582 mV, and Jsc = 39.44 mA/cm2. These results of newly developed USJ Si solar cells are outstanding comparing with the academic community in the world.
In 2014, the high conversion efficiency 24.7 % was achieved using SHJ solar cell by Panasonic. Although the c-Si surface passivation technology is a key process for achieving high efficiency SHJ solar cells as be known to all, the mechanism of passivation technique and how to prepare thin film with excellent passivation quality are still hard. Therefore, in order to further understand and develop the thin film passivation technique, cooperating with domestic PECVD to deposit intrinsic hydrogenated amorphous (a-Si:H) thin film was performed. In this thesis, the material of a-Si:H thin film was main investigated. It should be noted that the a-Si:H thin films with excellent passivation quality were prepared by domestic PECVD. According to our experimental results, the best passivation quality results from films are consistent with the low microstructure parameter, abundant hydrogen content, and high photosensitivity. The high passivation quality can be obtained at the onset of the amorphous–crystalline transition, while the thin film remains in the amorphous phase to form an abrupt interface with c-Si. The excellent effective lifetime, low surface recombination velocity (SRV), and high implied Voc have achieved 4.7 ms, 2.98 cm/s, and 725 mV, respectively. For SHJ solar cells with the structure of Ag/Ti/ITO/a-Si:H(p)/i/c-Si(n)/i/a-Si:H(n)/ ITO/Ti/Ag, the effective lifetime was verified of the unfinished cell structure p/i/c-Si/i/n, n/i/c-Si/i/n, and p/i/c-Si/i/p. Due to the passivation reduction with the boron-doped emitter deposited by ECRCVD result in the reduction of lifetime, hence the graded power (150 W~1800 W) was introduced to improve the lifetime and requirement of conductivity. In addition to optimize the SHJ solar cells, the ultra-thin (50 μm) Si substrates were also used. Above all, the SHJ solar cell on 200 μm n-type textured CZ c-Si wafer was obtained with an efficiency of 17.26 %, FF = 71.75 %, Voc = 660 mV, and Jsc = 36.71 mA/cm2. And the ultra-thin SHJ solar cell on 50 μm n-type planar CZ c-Si wafer was obtained with an efficiency of 12.46 %, FF = 65.40 %, Voc = 651 mV, and Jsc = 29.28 mA/cm2. These results of SHJ solar cells are outstanding comparing with the academic community in Taiwan.
In addition, except for the material of boron-doped epi-Si thin films and intrinsic a-Si:H thin films, the new material of boron-doped microcrystalline silicon oxide (μc-SiO:H) thin films and the intrinsic hydrogenated silicon oxide (a-SiO:H) passivation layer with low absorption coefficient and wide band gap were also developed for the high efficiency solar cells. The boron-doped μc-SiO:H thin film with high band gap (1.83 eV) and low absorption coefficient was achieved. And the a-SiO:H passivation layer with effective lifetime (800 μs) and low absorption coefficient was also achieved.
[1-1] “Global annual average temperature and carbon dioxide concentration”, National Oceanic and Atmospheric Administration (NOAA), 2010.
[1-2] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics, Vol. 25, no. 5, pp. 676–677, May 2004.
[1-3] “Annual PV installations from 2005 to 2014”, Joint Research Centre (JRC), 2014.
[1-4] “Best Research-Cell Efficiencies”, National Renewable Energy Laboratory (NREL), 2015.
[1-5] “Outlook for the development of the global energy mix to 2100”, Gehrlicher Solar Company, 2015.
[1-6] J. Zhao, A. Wang, M.A. Green, F. Ferrazza, “Novel 19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells”, J. Appl. Phys., Vol. 73, pp. 1991–1993, 1998.
[1-7] M. Labrune, M. Moreno, P. Roca i Cabarrocas, “Ultra-shallow junctions formed by quasi-epitaxial growth of boron and phosphorous-doped silicon films at 175 °C by rf-PECVD”, Thin Solid Films, Vol. 518, pp. 2528–2530, 2010.
[1-8] T. Mishima, M. Taguchi, H. Sakata,E. Maruyama, “Development status of high-efficiency HIT solar cells”, Sol. Energ. Mat. Sol., Vol. 95, pp. 18–21, 2011.
[1-9] H. Inoue, Y. Tsunomura, D. Fujishima, A. Yano, S. Taira, Y. Ishikawa, T. Nishiwaki, T. Nakashima, T. Asaumi, M. Taguchi, H. Sakata, and E. Maruyama, “Improving the Conversion Efficiency and Decreasing the Thickness of the HIT Solar Cell”, Mater. Res. Soc. Symp. Proc., Vol. 1210, pp. 1210-Q07-01, 2010.
[2-1] M.A. Green, “Solar cells: Operating principles, technology and system applications”, Centre for Photovoltaic Devices and Systems, University of New South Wales, 1992.
[2-2] A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, “>21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared”, IEEE JOURNAL OF PHOTOVOLTAICS, Vol. 3, pp. 83–89, 2013.
[2-3] R.L. Anderson, “Experiments on Ge-GaAs heterojunctions”, Solid-State Electronics, Vol. 5, pp. 341–344, 1962.
[2-4] R. Stangl, A. Froitzheim, L. Elstner, and W. Fuhs, “Amorphous/crystalline silicon heterojunction solar cells a simulation study”, 17th European Photovoltaic Solar Energy Conference, Munich (Germany), pp. 1387–1390, 2001.
[2-5] T.H. Wang, M.R. Page, E. Iwaniczko, D.H. Levi, Y. Yan, H.M. Branz et al., “Toward better understanding and improved performance of silicon heterojunction solar cells”, 14th Workshop on Crystalline Silicon Solar Cells and Modules, Colorado (USA), 2004.
[2-6] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, “HITTM cells - high-efficiency crystalline Si cells with novel structure”, Prog. Photovolt. Res. Appl., Vol. 8, pp. 503–513, 2000.
[2-7] Ken Suto and Jun‐ichi Nishizawa, “Radiative recombination mechanisms in stoichiometry‐controlled GaP crystals”, J. Appl. Phys., Vol. 67, pp. 459–464, 1990.
[2-8] P. Auger, “Sur les rayons β secondaires produits dans un gaz par des rayons X”, C.R.A.S., Vol. 177, pp. 169–171, 1923.
[2-9] I. Martín, “Silicon surface passivation by plasma enhanced chemical vapor deposited amorphous silicon carbide films”, PhD Thesis, Universitat Politècnica de Catalunya, Barcelona (Spain), 2004.
[2-10] J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon”, Appl. Phys. Lett., Vol. 31, pp. 346–348, 1977.
[2-11] A. Hangleiter and R. Häcker, “Enhancement of band-to-band Auger recombination by electron-hole correlations”, Phys. Rev. Lett., Vol. 65, pp. 215–218, 1990.
[2-12] Pietro P. Altermatt, Jan Schmidt, Gernot Heiser, and Armin G. Aberle, “Assessment and parameterisation of Coulomb-enhanced Auger recombination coef®cients in lowly injected crystalline silicon”, J. Appl. Phys., Vol. 82, pp. 4938–4944, 1997.
[2-13] W. Shockley and W.T. Read, “Statistics of the Recombinations of Holes and Electrons”, Phys. Rev., Vol. 87, pp. 835–842, 1952.
[2-14] R.N. Hall, “Electron-hole recombination in germanium”, Phys. Rev., Vol. 87, pp. 387, 1952.
[2-15] I.E. Tamm, “Über eine mögliche Art der Elektronen Bindung an Kristalloberflächen”, Zeitschrift für Physik, Vol. 76, pp. 849–850, 1932.
[2-16] W. Shockley, “On the surface states associated with a periodic potential”, Phys. Rev., Vol. 56, pp. 317–323, 1939.
[2-17] J.-F. Lelièvre, E. Fourmond, A. Kaminski, O. Palais, D. Ballutaud, and M. Lemiti, “Study of the composition of hydrogenated silicon nitride SiNx:H for efficient surface and bulk passivation of silicon”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 1281–1289, 2009.
[2-18] Yen-Ho Chu, Chien-Chieh Lee, Teng-Hsiang Chang, Yu-Lin Hsieh, Shian-Ming Liu, Jenq-Yang Chang, Tomi T. Li, and I-Chen Chen, “Investigation of interface quality and passivation improvement with a-SiO:H deposited by ECRCVD at low temperature”, J. Non-Cryst. Solids, Vol. 412, pp. 5–10, 2015.
[2-19] M. Vetter, I. Martín, R. Ferre, M. Garín, and R. Alcubilla, “Crystalline silicon surface passivation by amorphous silicon carbide films”, Sol. Energy Mater. Sol. Cells, Vol. 91, pp. 174–179, 2007.
[2-20] Q.-Y. Tong, Q. Gan, G. Hudson, G. Fountain, and P. Enquist, “Low-temperature hydrophobic silicon wafer bonding”, Appl. Phys. Lett., Vol. 83, pp. 4767–4769, 2003.
[2-21] M. Moreno, M. Labrune, and P. Roca i Cabarrocas, “Dry fabrication process for heterojunction solar cells through in-situ plasma cleaning and passivation”, Sol. Energy Mater. Sol. Cells, Vol. 94, pp. 402–405, 2010.
[2-22] J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee, A. Yamada, and M. Konagai, “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Jpn. J. Appl. Phys., Vol. 46, pp. 3296–3300, 2007.
[2-23] S. Gatz, T. Dullweber, V. Mertens, F. Einsele, and R. Brendel, “Firing stability of SiNy/ /SiNx stacks for the surface passivation of crystalline silicon solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 96, pp. 180–185, 2012.
[2-24] B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden, and W.M.M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3”, Appl. Phys. Lett., Vol. 89, pp. 042112, 2006.
[2-25] A. Kaminski, B. Vandelle, A. Fave, J.P. Boyeaux, L. Q. Nam, R. Monna, D. Sarti, and A. Laugier, “Aluminium BSF in silicon solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 72, pp. 373–379, 2002.
[2-26] J. Brody, A. Rohatgi & A. Ristow, “Review and comparison of equations relating bulk lifetime and surface recombination velocity to effective lifetime measured under flash lamp illumination”, Sol. Energy Mater. Sol. Cells, Vol. 77, pp. 293–301, 2003.
[2-27] M. Balestrieri, D. Pysch, J.P. Becker, M. Hermle, W. Warta and S. Glunz, “Characterization and optimization of indium tin oxide films for heterojunction solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 2390–2399, 2011.
[2-28] Shui-Yang Lien, “Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells”, Thin Solid Films, Vol. 518, pp. S10–S13, 2010.
[2-29] J. Plá, M. Tamasi, R. Rizzoli, M. Losurdo, E. Centurioni, C. Summonte, F. Rubinelli, “Optimization of ITO layers for applications in a-Si/c-Si heterojunction solar cells”, Thin Solid Films, Vol. 425, pp. 185–192, 2003.
[2-30] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, “Twenty-two percent efficiency HIT solar cell”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 670–673, 2009.
[2-31] John E. Mahan, “Physical Vapor Deposition of Thin Films”, pp. 336, Wiley-VCH, January 2000.
[2-32] Y.B. Park, S.W. Rhee, “Effect of hydrogen plasma precleaning on the removal of interfacial amorphous layer in the chemical vapor deposition of microcrystalline silicon films on silicon oxide surface”, Appl. Phys. Lett., Vol 68, pp. 2219-2221, 1996.
[2-33] Minoru Yoneta, Masakazu Ohishi, Hiroshi Saito, “Manabu Hayashi, Hideo Uechi, Anomaly in growth rate of Cl-doped ZnSe layer grown by molecular beam epitaxy”, J. Cryst. Growth, Vol 214–215, pp. 542–546, 2000.
[2-34] C Ruset, E Grigore, “The influence of ion implantation on the properties of titanium nitride layer deposited by magnetron sputtering”, Surf. Coat. Technol., Vol 156, pp. 159–161, 2002.
[2-35] Tsutomu Ikeda and Hiroshi Satoh, “Phase Formation And Characterization Of Hard Coatings In The Ti-Al-N System Prepared By The Cathodic Arc Ion Plating Method”, Thin Solid Films, Vol 195, pp. 99–110, 1991.
[2-36] H.O. Pierson, Handbook of Chemical Vapor Deposition, Second Edition: Principles, Technology, and Applications, Noyes Pubn, pp. 45, 1999.
[2-37] Atif Mossad Ali, “UV irradiation and H-2 passivation processes to classify and distinguish the origin of luminescence from thin film of nc-Si deposited by PECVD technique”, Journal of Alloys and Compounds, Vol 623, pp. 89–95, 2015.
[2-38] Mohit Agarwal, R.O. Dusane, “Passivation study of multi-crystalline silicon wafer with i-a-Si:H layer deposited by HWCVD”, Thin Solid Films, Vol 575, pp 64–66, 2015.
[2-39] B. Rau, K. Petter, I. Sieber, M. Stöger-Pollach, D. Eyidi, P. Schattschneider, S. Gall, K. Lips, W. Fuhs, “Extended defects in Si films epitaxially grown by low-temperature ECRCVD”, Journal of Crystal Growth, Vol 287, pp 433–437, 2006.
[2-40] Shaolin Hu, Sheng Liu, Zhi Zhang, Han Yan, Zhiyin Gan, Haisheng Fang, “A novel MOCVD reactor for growth of high-quality GaN-related LED layers”, Journal of Crystal Growth, Vol 415, pp 72–77, 2015.
[2-41] G. Lavaredaa, C. Nunes de Carvalho, A. Amaral, J.P. Conde, M. Vieira, V. Chu, “Properties of high growth rate amorphous silicon deposited by MC-RF-PECVD”, Vacuum, Vol 64, pp 245–248, 2002.
[2-42] Wee Chong Tan, S. Kobayashi, T. Aoki, Robert E. Johanson, S. O. Kasap, “Optical properties of amorphous silicon nitride thin-films prepared by VHF-PECVD using silane and nitrogen”, Journal of Materials Science: Materials in Electronics, Vol 20, pp 15–18, 2009.
[2-43] S Mizuno, A Verma, H Tran, P Lee, B Nguyen, “Dielectric constant and stability of fluorine doped PECVD silicon oxide thin films”, Thin Solid Films, Vol 283, pp 30–36, 1996.
[2-44] Essam ABDEL-FATTAH and Hideo SUGAI, “Influence of Excitation Frequency on the Electron Distribution Function in Capacitively Coupled Discharges in Argon and Helium”, Jpn. J. Appl. Phys., Vol. 42, pp. 6569–6577, 2003.
[2-45] M. Takai, T. Nishimoto, M. Kondo, A. Matsuda, “Chemical-reaction dependence of plasma parameter in reactive silane plasma”, Science and Technology of Advanced Materials, Vol. 2, pp. 495–503, 2001.
[2-46] J.P. Conde, V. Chu, M.F. da Silva, A. Kling, Z. Dai, and J.C. Soares et al., “Optoelectronic and structural properties of amorphous silicon-carbon alloys deposited by low-power electron-cyclotron resonance plasma-enhanced chemical-vapor deposition”, Journal of Applied Physics, Vol. 85, pp. 3327–3338, 1999.
[2-47] Chen Guang-Hua, Zhu Xiu-Hong, Yin Sheng-Yi, Hu Yue-Hui, Zhang Wen-Li, “Improvement on the conventional MWECR-CVD system and preparation of hydrogenated amorphous silicon films”, Vacuum, Vol. 77, pp. 355–358, 2005.
[2-48] K.C. Wang, H.L. Hwang, J.J. Loferski, T.R. Yew, “Studies on low temperature silicon grain growth on SiO2 by electron cyclotron resonance chemical vapor deposition”, Applied Surface Science, Vol. 104, pp. 373–378, 1996.
[2-49] K. Sasaki, H. Tomoda and T. Takada, “Etching action by atomic hydrogen and low temperature silicon epitaxial growth on ECR plasma CVD”, Vacuum, Vol. 51, pp. 537–541, 1998.
[2-50] Takayuki Nosaka, Masao Sakuraba, Bernd Tillack, and Junichi Murota, “Heavy B atomic-layer doping in Si epitaxial growth on Si(100) using electron-cyclotron-resonance plasma CVD”, Thin Solid Films, Vol. 518, pp. s140–s142, 2010.
[2-51] J.A.S. da Matta, R.M.O. Galvao, L. Ruchko, M.C.A. Fantini, and P.K. Kiyohara, Description and Characterization of a ECR Plasma Device Developed for Thin Film Deposition, Braz. J. Phys., Vol. 33, pp. 123–127, 2003.
[2-52] ANDREW J. FLEWITT and WILLIAM I. MILNE, Low-Temperature Deposition of Hydrogenated Amorphous Silicon in an Electron Cyclotron Resonance Reactor for Flexible Displays, PROCEEDINGS OF THE IEEE, Vol. 93, pp. 1364–1373, 2005.
[2-53] Chia-Hsun Hsu, Yang-Shih Lin, Yun-Shao Cho, Shui-Yang Lien, Pin Han, and Dong-Sing Wuu, Highly Stable Micromorph Tandem Solar Cells Fabricated by ECRCVD With Separate Silane Gas Inlets System, IEEE J. Quantum Electron., Vol. 50, pp. 515–521, 2014.
[2-54] R. C. Chittick, J. H. Alexander, and H. F. sterling, “The preparation and properties of amorphous silicon”, J. Electrochem. Soc., Vol. 116, pp. 77, 1969.
[2-55] W. E. Spear and P. G. LeComber, "Investigation of the localized state distribution in amorphous Si films", J. Non-Cryst Solids, Vol. 8–10, pp. 727–738, 1972.
[2-56] W. E. Spear and P. G. Lecomber,” Substitutional Doping of Amorphous Silicon”, Solid State Commun., Vol. 17, pp. 1193, 1975.
[2-57] K. Chopra, P. Paulson, V. Dutta, “Thin-Film Solar Cells: An Overview”, Progress in Photovoltaics: Research and Applications, Vol. 12, pp. 69–92, 2004.
[2-58] Yoshikazu Nakayama, Mitsuru Kondoh, Kohji Hitsuishi, Mei Zhang, and Takao Kawamura, “Behavior of charged particles in an electron cyclotron resonance plasma chemical vapor deposition reactor”, Appl. Phys. Lett., Vol. 57, pp. 2297–2299, 1990.
[2-59] M. Zhang, S. Nonoyama, and Y. Nakayama, "Electron Behavior in the Downstream of an Electron Cyclotron Resonance Plasma Used for Chemical Vapor Deposition," Plasma Chemistry and Plasma Processing, Vol. 15 (3), pp. 409-426, 1995.
[2-60] J.-L Guizot, K Nomoto, A. Matsuda, “Surface reactions during the a-Si:H growth in the diode and triode glow-discharge reactors”, Surf. Sci., Vol. 244, pp. 22–38, 1991.
[2-61] B. Pieters, “Characterization of Thin-film silicon materials and solar cells through numerical modeling”, Delft University of Technology, Dissertation thesis, 2008.
[2-62] H. Overhof, “Fundamental concepts in the physics of amorphous semiconductors,” J. Non-Cryst. Solids, Vol. 227–230, pp. 15–22, 1998.
[2-63] J. Sritharathikhun, C. Banerjee, M. Otsubo et al., “Surface passivation of crystalline and polycrystalline silicon using hydrogenated amorphous silicon oxide lm,” Japanese Journal of Applied Physics, Vol. 46, pp. 3296–3300, 2007.
[2-64] T. Mueller, S. Schwertheim, and W. R. Fahrner, “Application of wide-bandgap hydrogenated amorphous silicon oxide layers to heterojunction solar cells for high quality passivation,” in Proceedings of the 33rd IEEE Photovoltaic Specialists Conference (PVSC ’08), May 2008.
[2-65] H. P. Zhou, D. Y. Wei, S. Xu et al., “Si surface passivation by SiOx:H films deposited by a low-frequency ICP for solar cell applications,” Journal of Physics D: Applied Physics, Vol. 45, Article ID 395401, 2012.
[2-66] A. Janotta, R. Janssen, M. Schmidt, T. Graf, L. Go¨rgens, C. Hammerl, S. Schreiber, G. Dollinger, A. Bergmaier, B. Stritzker, M. Stutzmann, “Dependence of the doping efficiency on material composition in n-type a-SiOx:H”, J. Non-Cryst. Solids, Vol. 299–302, pp. 579–584, 2002.
[2-67] K. Haga, K. Yamamoto, M. Kumano, H. Watanabe, “Wide optical-gap a-Si:O:H films prepared from SiH4-CO2 gas mixture”, Jpn. J. Appl. Phys., Vol. 25, pp. L39–L41, 1986.
[2-68] R. Carius, R. Fischer, E. Holzenkampfer, J. Stuke, “Photoluminescence in the amorphous system SiOx”, J. Appl. Phys., Vol. 52, pp. 4241–4243, 1981.
[2-69] M. Zacharias, H. Freistedt, F. Stolze, T.P. Dru¨sedau, M. Rosenbauer, M. Stutzmann, “Properties of sputtered a-SiOx:H alloys with a visible luminescence”, J. Non-Cryst. Solids, Vol. 164–166, pp. 1089–1092, 1993.
[2-70] R. Janssen, A. Janotta, M. Stutzmann, “Thermal stability of p-type doped amorphous silicon suboxides”, J. Non-Cryst. Solids, Vol. 266–269, pp. 840–844, 2000.
[2-71] Arup Samanta, Debajyoti Das, “Studies on the structural properties of SiO:H films prepared from (SiH4+CO2+He) plasma in RF-PECVD”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 588–596, 2009.
[2-72] Yen-Ho Chu, Chien-Chieh Lee, Teng-Hsiang Chang, Yu-Lin Hsieh, Shian-Ming Liu, Jenq-Yang Chang, Tomi T. Li, and I-Chen Chen, “Investigation of Interface Quality and Passivation Improvement with a-SiO:H Deposited by ECRCVD at Low Temperature”, J. Non-Cryst. Solids, Vol. 412, pp. 5–10, 2015.
[2-73] Y. Nakayama, M. Uecha, T. Ikeda, “Photoluminescence from silicon chainlike structures in a-SiOx:H films”, J. Non-Cryst. Solids, Vol. 198–200, pp. 915–918, 1996.
[2-74] Jia Guangzhi, Liu Honggang, and Chang Hudong, “Annealing optimization of hydrogenated amorphous silicon suboxide film for solar cell application”, Journal of Semiconductors, Vol. 32, pp. 052002-1–052002-3, 2011.
[2-75] E.G. Parada, P. Gonzalez, J. Serra, B. Leon, M. Perez-Amor, M.F. da Silva, H. Wolters, J.C. Soares, “Hydrogen incorporation in silicon oxide films deposited by ArF laser-induced chemical vapor deposition”, J. Non-Cryst. Solids, Vol. 187, pp. 75–80, 1995.
[2-76] Yasuhiro Matsumoto, Victor Sánchez R., Alejandro Avila G., “Wide optical bandgap p-type μc-Si:Ox:H prepared by Cat-CVD and comparisons to p-type μc-Si:H”, Thin Solid Films, Vol. 516, pp. 593– 596, 2008.
[2-77] P.V. Bulkin, P.L. Swart, B.M. Lacquet, J., “Electron cyclotron resonance plasma enhanced chemical vapour deposition and optical properties of SiOx thin films”, J. Non-Cryst. Solids, Vol. 226, pp. 58–66, 1998.
[2-78] Hiroyuki Fujiwara, Hitoshi Sai, and Michio Kondo, “Crystalline Si Heterojunction Solar Cells with the Double Heterostructure of Hydrogenated Amorphous Silicon Oxide”, Jpn. J. Appl. Phys., Vol. 48, pp. 064506-1–064506-4, 2009.
[2-79] Jaran Sritharathikhun, Fangdan Jiang, Shinsuke Miyajima, Akira Yamada, and Makoto Konagai, “Optimization of p-type hydrogenated microcrystalline silicon oxide window layer for high-efficiency crystalline silicon heterojunction solar cells”, Jpn. J. Appl. Phys., Vol. 48, pp. 101603-1–101603-5, 2009.
[2-80] Hiroyuki Fujiwara, Tetsuya Kaneko, and Michio Kondo, “Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells”, Appl. Phys. Lett., Vol. 91, pp. 133508-1–133508-3, 2007.
[2-81] H. Watanabe, K. Haga, and T. Lohner, “Structure of high-photosensitivity silicon-oxygen ally films”, J. Non-Cryst. Solids, Vol. 164–166, pp. 1085–1088, 1993.
[2-82] G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, W. Czubatyj, Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films, Phys. Rev. B, Vol. 28, pp. 3225–3233, 1983.
[2-83] F.W. Smith and Z. Yin, “Free energy model for bonding in a-Si alloys”, J. Non-Cryst. Solids, Vol. 137–138, pp. 871–874, 1991.
[2-84] D. J. Eaglesham, “Semiconductor molecular-beam epitaxy at low temperatures”, J. Appl. Phys., Vol. 77, pp. 3597–3617, 1995.
[2-85] M.S. Mason, C.M. Chen, and H.A. Atwater, “Hot-wire chemical vapor deposition for epitaxial silicon growth on large-grained polycrystalline silicon templates”, Thin Solid Films, Vol. 430, pp. 54–57, 2003.
[2-86] Hong-Seung Kim, Kyu-Hwan Shim, Seung-Yun Lee, Jeong-Yong Lee, and Jin-Young Kang, “High-quality epitaxial growth of in situ phosphorus-doped Si films by promoting dispersion of native oxides in α-Si”, J. Cryst. Growth, Vol. 212, pp. 423–428, 2000.
[2-87] Oluwamuyiwa O. Olubuyide, David T. Danielson, Lionel C. Kimerling, and Judy L. Hoyt, “Impact of seed layer on material quality of epitaxial germanium on silicon deposited by low pressure chemical vapor deposition”, Thin Solid Films, Vol. 508, pp. 14–19, 2006.
[2-88] R. Cariou, M. Labrune, and P. Roca i Cabarrocas, “Thin crystalline silicon solar cells based on epitaxial films grown at 165 °C by RF-PECVD”, Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 2260–2263, 2011.
[2-89] J. Platen, B. Selle, S. Christiansen, M. Nerding, M. Schmidbauer, and W. Fuhs, “Crystalline Si Films Grown Epitaxially at Low Temperatures by ECR-PECVD”, Mat. Res. Soc. Symp. Proc., Vol. 609, pp. A8.6.1–A8.6.6, 2000.
[2-90] B. Demaurex, R. Bartlome, J.P. Seif, J. Geissbuhler, D.T.L. Alexander, Q. Jeangros, C. Ballif, and S.D. Wolf, “Low-temperature plasma-deposited silicon epitaxial films: Growth and properties”, J. Appl. Phys., Vol. 116, pp. 053519-1–053519-9, 2014.
[2-91] Akihisa Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol. 337, pp. 1–6, 1999.
[3-1] G.E. Jellison, M.F. Chisholm, and S.M. Gorbatkin, “Optical functions of chemical vapor deposited thin film silicon determined by spectroscopic ellipsometry”, Appl. Phys. Lett., Vol. 62, pp. 3348–3350, 1993.
[3-2] C.W. Teplin, D.H. Levi, E. Iwaniczko, K.M. Jones, and J.D. Perkins, “Monitoring and modeling silicon homoepitaxy breakdown with real-time spectroscopic ellipsometry”, J. Appl. Phys., Vol. 97, pp. 103536, 2005.
[3-3] L. Pereira, H. Aguas, E. Fortunato, and R. Martins, “Nanostructure characterization of high k materials by spectroscopic ellipsometry”, Appl. Surf. Sci., Vol. 253, pp. 339–343, 2006.
[3-4] G.F. Feng, and R. Zallen, “Optical properties of ion-implanted GaAs: The observation of finite-size effects in GaAs microcrystals”, Phys. Rev. B, Vol. 40, pp. 1064, 1989.
[3-5] G.E. Jellison, Jr. and F.A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region” Appl. Phys. Lett., Vol. 69, pp. 371–373, 1996.
[3-6] R.A. Sinton, A. Cuevas and M. Stuckings, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization”, Proc. 25th Photovoltaic Specialists Conf., pp. 457–460, 1996.
[3-7] R.A. Sinton and A. Cuevas, “Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data”, Appl. Phys. Lett., Vol. 69, pp. 2510–2512, 1996.
[3-8] J. Damon-Lacoste, P.R.I. Cabarrocas, “Toward a better physical understanding of a-Si:H/c-Si heterojunction solar cells”, J. Appl. Phys., Vol. 105, pp. 063712, 2009.
[3-9] C.W. Teplin, D.H. Levi, E. Iwaniczko, K.M. Jones, J.D. Perkins, and H.M. Branz, “Monitoring and modeling silicon homoepitaxy breakdown with real-time spectroscopic ellipsometry”, J. Appl. Phys., Vol. 97, pp. 103536, 2005.
[3-10] D.E. ASPNES, “OPTICAL PROPERTIES OF THIN FILMS”, Thin Solid Films, Vol. 89, pp. 249–262, 1982.
[3-11] R.A. Street, “Sweep-Out Measurements of Band-Tail Carriers in a-Si:H,” Philosophical Magazine B, Vol. 60, pp. 213–236, 1989.
[3-12] P.A. Fedders and D.A. Drabold, “Theory of Boron Doping in a-Si:H,” Physical Review B, Vol. 56, pp. 1864–1867, 1997.
[3-13] Y. Komatsu, V.D. Mihailetchi, L.J. Geerligs, B. van Dijk, J.B. Rem, and M. Harris, “Homogeneous p+ emitter diffused using boron tribromide for record 16.4% screen-printed large area n-type mc-Si solar cell”, Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 750–752, 2009.
[3-14] B. Hekmatshoar, D. Shahrjerdi and D.K. Sadana, “Novel Heterojunction Solar Cells with Conversion Efficiencies Approaching 21% on p-Type Crystalline Silicon Substrates”, Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 36.6.1–36.6.4, 2011.
[3-15] P. Buehlmann, J. Bailat, D. Domine, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells”, Appl. Phys. Lett., Vol. 91, pp. 143505, 2007.
[3-16] T. Grundler, A. Lambertz, and F. Finger, “N-type hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase as an intermediate reflector in silicon thin film solar cells”, Phys. Status Solidi C, Vol. 7, pp. 1085–1088, 2010.
[3-17] P.D. Veneri, L.V. Mercaldo, and I. Usatii, “Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells”, Appl. Phys. Lett., Vol. 97, pp. 023512, 2010.
[3-18] S. Fujikake, H. Ohta, P. Sichanugrist, M. Ohsawa, Y. Ichikawa, and H. Sakai, “A-SIO-H FILMS AND THEIR APPLICATION TO SOLAR-CELLS”, Optoelectronics–Devices and Technologies, Vol. 9, pp. 379–390, 1994.
[3-19] P. Obermeyer, C. Haase, and H. Stiebig, “Advanced light trapping management by diffractive interlayer for thin-film silicon solar cells”, Appl. Phys. Lett., Vol. 92, pp. 181102, 2008.
[3-20] H. Fujiwara, T. Kaneko, and M. Kondo, “Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells”, Appl. Phys. Lett., Vol. 91, pp. 133508, 2007.
[3-21] G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, and W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films”, Phys. Rev. B, Vol. 28, pp. 3225–3233, 1983.
[3-22] M.H. Brodsky, M. Cardona, and J.J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, Vol. 16, pp. 3556–3571, 1977.
[3-23] H. Shanks, C.J. Fang, L. Ley, M. Cardona, F.J. Demond, and S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon”, Phys. Status Solidi B, Vol. 110, pp. 43–56, 1980.
[3-24] J. Tauc, and A. Menth, “States in the gap”, J. Non-Cryst. Solids, Vol. 8, pp. 569–585, 1972.
[3-25] A. Lambertz, F. Finger, B. Holländer, J.K. Rath, and R.E.I. Schropp, “Boron-doped hydrogenated microcrystalline silicon oxide (μc-SiOx:H) for application in thin-film silicon solar cells”, J. Non-Cryst. Solids, Vol. 358, pp. 1962–1965, 2012.
[3-26] G.B.Smith, D.R. McKenzie, and P.J. Martin, “An XPS study of chemical order in hydrogenated amorphous silicon-carbon alloy films”, Phys. Status Solidi B, Vol. 152, pp. 475–480, 1989.
[3-27] F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff and G. Hollinger, “Microscopic structure of the SiO2/Si interface”, Phys. Rev. B, Vol. 38, pp. 6084–6096, 1988.
[3-28] J. Finster, D. Schulze and A. Meisel, “Characterization of amorphous SiOx layers with ESCA”, Surf. Sci., Vol. 162, pp. 671–679, 1985.
[3-29] T.P. Nguyen and S. Lefrant, “XPS study of SiO thin films and SiO-metal interfaces”, J. Phys. Condens. Matter, Vol. 1, pp. 5197–5204, 1989.
[3-30] H. Okamoto, Y. Nitta, T. Yamaguchi, and Y. Hamakawa, “Device physics and design of a-Si ITO/p-i-n heteroface solar cells”, Sol. Energy Mater., Vol. 2, pp. 313–325, 1980.
[3-31] M. Furuta, K. Shimamura, H. Tsubokawa, K. Tokushige, H. Furuta, and T. Hirao, “Activation behavior of boron implanted poly-Si on glass substrate”, Thin Solid Films, Vol. 518, pp. 4477–4481, 2010.
[3-32] T. Krajangsang, S. Kasashima, I.A. Yunaz, S. Miyajima, and M. Konagai, “HETERO-JUNCTION MICROCRYSTALLINE SILICON SOLAR CELLS WITH WIDE-GAP p-μc-Si1-xOx:H LAYER”, Photovoltaic Specialists Conference (PVSC), pp. 001531–001534, 2010.
[3-33] A. Orduña-Diaz, C.G. Treviño-Palacios, M. Rojas-Lopez, R. Delgado-Macuil, V.L. Gayou, and A. Torres-Jacome, “FTIR and electrical characterization of a-Si:H layers deposited by PECVD at different boron ratios”, Materials Science and Engineering B, Vol. 174, pp. 93–96, 2010.
[3-34] P.Q. Luo, Z.B. Zhou, K.Y. Chan, D.Y. Tang, R.Q. Cui, and X.M. Dou, “Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition”, Applied Surface Science, Vol. 255, pp. 2910–2915, 2008.
[3-35] A. Chowdhury, K. Adhikary, S. Mukhopadhyay, and S. Ray, “Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells”, J. Phys. D: Appl. Phys., Vol. 41, pp. 135104, 2008.
[3-36] K. Adhikary and S. Ray, “Characteristics of p-type nanocrystalline silicon thin films developed for window layer of solar cells”, Journal of Non-Crystalline Solids, Vol. 353, pp. 2289–2294, 2007.
[3-37] Y. Matsumoto, F. MeleHndez, and R. Asomoza, “Performance of p-type silicon-oxide windows in amorphous silicon solar cell”, Sol. Energy Mater. Sol. Cells, Vol. 66, pp. 163–170, 2001.
[3-38] A.G. Aberle, S. Glunz, and W. Warta, “Impact of illumination level and oxide parameters on Shockley-Read-Hall recombination at the Si–SiO2 interface”, J. Appl. Phys., Vol. 71, pp. 4422–4431, 1992.
[3-39] D.M.B. Pysch, K. Zimmermann, C. Schetter, M. Hermle, and S.W. Glunz, “Comprehensive study of different PECVD-deposition methods for deposition of thin intrinsic amorphous silicon for heterojunction solar cells”, Proc. of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, pp. 1580, 2006.
[3-40] M. Taguchi, A. Terakawa, E. Maruyama, and M. Tanaka, “Obtaining a higher VOC in HIT cells”, Prog. Photovolt. Res. Appl., Vol. 13, pp. 481–488, 2005.
[3-41] H.J. Jia, J.K. Saha, N. Ohse, and H. Shirai, “Toward the fast deposition of highly crystallized microcrystalline silicon films with low defect density for Si thin-film solar cells, J. Non-Cryst. Solids, Vol. 352, pp. 896–900, 2006.
[3-42] M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, “Chemical-reaction dependence of plasma parameter in reactive silane plasma”, Sci. Technol. Adv. Mater., Vol. 2, pp. 495–503, 2001.
[3-43] J. Gope, S. Kumar, S. Singh, C.M.S. Rauthan, and P.C. Srivastava, “Growth of mixed-phase amorphous and ultra nanocrystalline silicon thin films in the low pressure regime by a VHF PECVD process”, Silicon, Vol. 4, pp. 127–135, 2012.
[3-44] U. Kroll, J. Meier, A. Shah, S. Mikhailov, and J. Weber, “Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution”, J. Appl. Phys., Vol. 80, pp. 4971–4975, 1996.
[3-45] J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee, A. Yamada, and M. Konagai, “Surface passivation of crystalline and polycrystalline silicon using hydrogenated amorphous silicon oxide film”, Jpn. J. Appl. Phys., Vol. 46, pp. 3296–3300, 2007.
[3-46] Hiroyuki Fujiwara and Michio Kondo, “Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells”, Appl. Phys. Lett., Vol. 90, pp. 013503, 2007.
[3-47] R.W. Collins, A.S. Ferlauto, G.M. Ferreira, Chi Chen, Joohyun Koh, R.J. Koval, Yeeheng Lee, J.M. Pearce, and C.R. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry”, Sol. Energy Mater. Sol. Cells, Vol. 78, pp. 143–180, 2003.
[3-48] M.R. Page, E. Iwaniczko, Y.-Q. Xu, L. Roybal, F. Hasoon, Q. Wang, and R.S. Crandall, “Amorphous/crystalline silicon heterojunction solar cells with varying i-layer thickness”, Thin Solid Films, Vol. 519, pp. 4527–4530, 2011.
[3-49] J. Ge, Z.P. Ling, J. Wong, R. Stangl, A.G. Aberle, and T. Mueller, “Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy”, JOURNAL OF APPLIED PHYSICS, Vol. 113, pp. 234310, 2013.
[3-50] S. Kim, V.A. Dao, Y. Lee, C. Shin, J. Park, J. Cho, and J. Yi, “Processed optimization for excellent interface passivation quality of amorphous/crystalline silicon solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 117, pp. 174–177, 2013.
[3-51] J. Ge, Z.P. Ling, J. Wong, T. Mueller, and A.G. Aberle, “Optimisation of Intrinsic a-Si:H Passivation Layers in Crystalline-amorphous Silicon Heterojunction Solar Cells”, Energy Procedia, Vol. 15, pp. 107–117, 2012.
[3-52] Jan-Willem A. Schüttauf, Karine H. M. van der Werf, Inge M. Kielen, Wilfried G. J. H. M. van Sark, Jatindra K. Rath et al., “Excellent crystalline silicon surface passivation by amorphous silicon irrespective of the technique used for chemical vapor deposition” APPLIED PHYSICS LETTERS, Vol. 98, pp. 153514, 2011.
[3-53] M. Schaper, J. Schmidt, H. Plagwitz, and Rolf Brendel, “20.1%-efficient Crystalline Silicon Solar Cell with Amorphous Silicon Rear-surface Passivation”, Prog. Photovolt: Res. Appl., Vol. 13, pp. 381–386, 2005.
[3-54] C. Manfredotti, F. Fizzotti, M. Boero, P. Pastorino, P. Polesello, and E. Vittone, “Influence of hydrogen-bonding configurations on the physical properties of hydrogenated amorphous silicon”, Phys. Rev. B, Vol. 50, pp. 18046–18053, 1994.
[3-55] J. Park, V.A. Dao, C. Shin, H. Park, M. Kim, J. Jung, D. Kim, and J. Yi, “A buffer-layer/a-SiOx:H(p) window-layer optimization for thin film amorphous silicon based solar cells”, Thin Solid Films, Vol. 546, pp. 331–336, 2013.
[3-56] H. Watanabe, K. Haga, and T. Lohner, “Structure of high-photosensitivity silicon–oxygen alloy films”, J. Non-Cryst. Solids, Vol. 164, pp. 1085–1088, 1993.
[3-57] H. Fujiwara, T. Kaneko, and M. Kondo, “Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells”, Appl. Phys. Lett., Vol. 91, pp. 133508, 2007.
[3-58] G.D. Cody, B.G. Brooks, B. Abeles, Optical absorption above the optical gap of amorphous silicon hydride, Sol. Energy Mater. Vol. 8, pp. 231–240, 1982.
[3-59] A. Samanta and D. Das, “Optical, electrical and structural properties of SiO:H films prepared from He dilution to the SiH4 plasma”, J. Phys. D. Appl. Phys., Vol. 42, pp. 215404, 2009.
[3-60] T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells”, Thin Solid Films, Vol. 501, pp. 284–287, 2006.
[3-61] H. Fujiwara, and M. Kondo, “Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells”, Appl. Phys. Lett., Vol. 90, pp. 013503, 2007.
[3-62] Y. Veschetti, J.C. Muller, J. Damon-Lacoste, P.R.I. Cabarrocas, A.S. Gudovskikh, J.P. Kleider, P.J. Ribeyron, and E. Rolland, “Optimisation of amorphous and polymorphous thin silicon layers for the formation of the front-side of heterojunction solar cells on p-type crystalline silicon substrates”, Thin Solid Films Vol. 511, pp. 543–547, 2006.
[3-63] J.J.H. Gielis, P.J. Van Den Oever, B. Hoex, M.C.M. Van De Sanden, and W.M.M. Kessels, “Real-time study of a-Si:H/c-Si heterointerface formation and epitaxial Si growth by spectroscopic ellipsometry, infrared spectroscopy, and second-harmonic generation”, Phys. Rev. B, Vol. 77, pp. 205329, 2008.
[3-64] T. Mueller, J. Wong, and A.G. Aberle, “Heterojunction Silicon Wafer Solar Cells using Amorphous Silicon Suboxides for Interface Passivation”, Energy Procedia, Vol. 15, pp. 97–106, 2012.
[3-65] J. Guangzhi, L. Honggang, and C. Hudong, “Annealing optimization of hydrogenated amorphous silicon suboxide film for solar cell application”, Journal of Semiconductors, Vol. 32, pp. 052002, 2011.
[3-66] F. Einsele, W. Beyer, and U. Rau, “Annealing studies of sub- stoichiometric amorphous SiOx layers for c-Si surface passivation”, Phys. Status Solidi C, Vol. 7, pp. 1021–1024, 2010.
[3-67] T. Mueller, S. Schwertheim, and W.R. Fahrner, “Crystalline silicon surface passivation by high-frequency plasma-enhanced chemical-vapor-deposited nanocomposite silicon suboxides for solar cell applications”, JOURNAL OF APPLIED PHYSICS, Vol. 107, pp. 014504, 2010.
[3-68] J. Sritharathikhun, H. Yamamoto, S. Miyajima, A. Yamada, and M. Konagai, “Optimization of Amorphous Silicon Oxide Buffer Layer for High-Efficiency p-Type Hydrogenated Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells”, Japanese Journal of Applied Physics, Vol. 47, pp. 8452–8455, 2008.
[3-69] J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee, A. Yamada, and M. Konagai, “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46, pp. 3296–3300, 2007.
[3-70] Yen-Ho Chu, Chien-Chieh Lee, Teng-Hsiang Chang, Yu-Lin Hsieh, Shian-Ming Liu, Jenq-Yang Chang, Tomi T. Li, and I-Chen Chen, “Investigation of interface quality and passivation improvement with a-SiO:H deposited by ECRCVD at low temperature”, Journal of Non-Crystalline Solids, Vol. 412, pp. 5–10, 2015.
[4-1] T. Nakai, H. Taniguchi, T. Ienaga, and Y. Kadonaga, “PHOTOVOLTAIC ELEMENT AND METHOD FOR MANUFACTURE THEREOF”, US 6207890 B1, Mar. 27, 2001.
[4-2] S.-S. Tant, M. Reedft, H. Hans, and R. Boudreaus, “Morphology of etch hillock defects created during anisotropic etching of silicon”, J. Micromech. Microeng., Vol. 4, pp. 147–155, 1994.
[4-3] S. De Wolf and M. Kondo, “Nature of doped a-Si:H/c-Si interface recombination”, J. Appl. Phys., Vol. 105, pp. 103707, 2009.
[4-4] J. Pla, E. Centurioni, C. Summonte, R. Rizzoli, A. Migliori, A. Desalvo, and F. Zignani, “Homojunction and heterojunction silicon solar cells deposited by low temperature–high frequency plasma enhanced chemical vapour deposition”, Thin Solid Films, Vol. 405, pp. 248–255, 2002.
[4-5] H. Yamamoto, Y. Takaba, Y. Komatsu, M.J. Yang, T. Hayakawa, M. Shimizu, and H. Takiguchi, “High-efficiency mc-Si/c-Si heterojunction solar cells”, Sol. Energy Mater. Sol. Cells, Vol. 74, pp. 525–531, 2002.
[4-6] R. SHIMOKAWA, M. YAMANAKA, and I. SAKATA, “Very Low Temperature Epitaxial Growth of Silicon Films for Solar Cells”, Japanese Journal of Applied Physics, Vol. 46, pp. 7612–7618, 2007.
[4-7] Mahdi Farrokh-Baroughi and Siva Sivoththaman, “A Novel Silicon Photovoltaic Cell Using a Low-Temperature Quasi-Epitaxial Silicon Emitter”, IEEE ELECTRON DEVICE LETTERS, Vol. 28, pp. 575–577, 2007.
[4-8] M. Labrune, M. Moreno, P. Roca i Cabarrocas, “Ultra-shallow junctions formed by quasi-epitaxial growth of boron and phosphorous-doped silicon films at 175 °C by rf-PECVD”, Thin Solid Films, Vol. 518, pp. 2528–2530, 2010.
[4-9] D. Zhang, A. Tavakoliyaraki, Y. Wu, R.A.C.M.M. van Swaaij, M. Zeman, “Influence of ITO deposition and post annealing on HIT solar cell structures”, Energy Procedia, Vol. 8, pp. 207–213, 2001.
[4-10] Z.P. Ling, J. Ge, R. Stangl, A.G. Aberle, T. Mueller, “Detailed Micro Raman Spectroscopy Analysis of Doped Silicon Thin Film Layers and Its Feasibility for Heterojunction Silicon Wafer Solar Cells”, Journal of Materials Science and Chemical Engineering, Vol. 1, pp. 1–14, 2013.
[4-11] J. Ge, Z.P. Ling, J. Wong, T. Mueller, and A.G. Aberle, “Optimisation of Intrinsic a-Si:H Passivation Layers in Crystalline-amorphous Silicon Heterojunction Solar Cells”, Energy Procedia, Vol. 15, pp. 107–117, 2012
[4-12] A. Descoeudres, Z.C. Holman, L. Barraud, S. Morel, S.D. Wolf, and C. Ballif, “>21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared”, JOURNAL OF PHOTOVOLTAICS, Vol. 3, pp. 83–89, 2013.
[4-13] X. Zhang, A. Cuevas, B. Demaurex, and S.D. Wolf, “Sputtered hydrogenated amorphous silicon for silicon heterojunction solar cell fabrication”, Energy Procedia, Vol. 55, pp. 865–872, 2014.
[4-14] C.L. Zhong, K.W. Geng, and R.H. Yao, “S-Shaped J-V characteristic of a-Si:H/c-Si heterojunction solar cell”, ACTA PHYSICA SINICA, Vol. 59, pp. 6538–6544, 2010.
[4-15] A. Kumar, S. Sista, and Y. Yang, “Dipole induced anomalous S-shape I - V curves in polymer solar cells”, J. Appl. Phys., Vol. 105, pp. 094512, 2009.
[4-16] H. Inoue, Y. Tsunomura, D. Fujishima, A. Yano, S. Taira, Y. Ishikawa, T. Nishiwaki, T. Nakashima, T. Asaumi, M. Taguchi, H. Sakata, and E. Maruyama, “Improving the Conversion Efficiency and Decreasing the Thickness of the HIT Solar Cell”, Mater. Res. Soc. Symp. Proc., Vol. 1210, pp. 1210-Q07-01, 2010.
[4-17] S. Bowden, "From the valley of death to the golden decade: crystalline silicon solar cells from 10 μm to 100 μm", i9th Workshop on Crystalline Si Solar Cells and Modules, pp. 192–195, 2009.
[4-18] J.G. Fossum, D. Sarkar, L. Mathew, R. Rao, D. Jawarani, and M.E. Law, "Back-contact solar cells in thin crystalline silicon", 35th iEEE Photovoltaic Specialist Conference, pp. 3131–3136, 2010.
[4-19] M.A. Green, A. Blakers, J. Shi, E.M. Keller, and S.R. Wenham, “High-efficiency silicon solar cells”, IEEE Trans. Electron Devices Vol. 31, pp. 679–683, 1984.
[4-20] T. Tiedje, E. Yablonovitch, G.D. Cody, and B.G. Brooks, “Limiting efficiency of silicon solar cells”, IEEE Trans. Electron Devices Vol. 31, pp. 711–716, 1984.
[4-21] M.A. Green, “Solar cells: Operating principles, technology and system applications”, University of New South Wales, Kensington, pp. 81–82, 1998
[4-22] C.J.J. Tool, A.R. Burgers, P. Manshanden, A.W. Weeber, and B.H.M. van Straaten “Influence of wafer thickness on the performance of multicrystalline Si solar cells; an experimental study”, Prog. Photovolt: Res. Appl., Vol. 10, pp. 279–291, 2002.
[4-23] Yun-Shao Cho, Chia-Hsun Hsu, Shui-Yang Lien, Dong-Sing Wuu, and In-Cha Hsieh, “Effect of Hydrogen Content in Intrinsic a-Si:H on Performances of Heterojunction Solar Cells”, International Journal of Photoenergy, Vol. 2013, pp. 1–6, 2013.
[4-24] Chie-Sheng Liu, Chia-Yin Wu, Ian-Wei Chen, Hseuh-Chuan Lee, and Lu-Sheng Hong, “High-rate deposition of a-Si:H thin layers for high-performance silicon heterojunction solar cells”, Prog. Photovolt: Res. Appl., Vol. 21, pp. 326–331, 2013.
[4-25] Hsin-Yuan Mao, Dong-Sing Wuu, Bing-Rui Wu, Shih-Yung Lo, Hsin-Yu Hsieh, and Ray-Hua Horng, “Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline SiC films and their use in Si heterojunction solar cells”, Thin Solid Films, Vol. 520, pp. 2110–2114, 2012.
[4-26] Jui-Chung Hsiao, Chien-Hsun Chen, Chao-Cheng Lin, Der-Ching Wu, and Peichen Yu, “Effect of Hydrogen Dilution on the Intrinsic a-Si:H Film of the Heterojunction Silicon-Based Solar Cell”, Journal of The Electrochemical Society, Vol. 158, pp. 876–878, 2011.
[5-1] M. Bruel, “Silicon on insulator material technology”, Electron. Lett., Vol. 31, pp. 1201–1202, 1995.
[5-2] M. Bruel, “Separation of Silicon wafers by the smart-cut method,” Mat. Res. Innovat., Vol. 3, pp. 9–13, 1999.
[5-3] B. Terreault, “Hydrogen blistering of silicon: Progress in fundamental understanding”, Phys. Stat. Sol., Vol. 204, pp. 2129–2184, 2007.
[5-4] S. Igarashi, A.N. Itakura, and M. Kitajima, “Surface Patterning Using Blister Exfoliation Induced by Electron Irradiation”, Jpn J. Appl. Phys., Vol. 46, pp. 7812–7815, 2007.
[5-5] M. Moreno and P. Roca i Cabarrocas, “Ultra-thin crystalline silicon films produced by plasma assisted epitaxial growth on silicon wafers and their transfer to foreign substrates”, EPJ Photovoltaics, Vol. 1, pp. 10301, 2010.
[5-6] R. Cariou, M. Labrune, P. Roca i Cabarrocas, “Thin crystalline silicon solar cells based on epitaxial films grown at 165 oC by RF-PECVD”, Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 2260–2263, 2011.
[5-7] J.M. Román, “State-of-the-art of III-V solar cell fabrication technologies, device designs and applications”, Advanced Photovoltaic Cell Design, 2004.
[5-8] “Panasonic HIT® Solar Cell Achieves World’s Highest Energy Conversion Efficiency of 25.6% at Research Level”, Osaka, Japan, Apr 10, 2014.
[5-9] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, “Solar cell efficiency tables (version 39)”, Prog. Photovoltaics Res. Appl., Vol. 20, pp. 12–20, 2012.
[5-10] Sayan Saha, Mohamed M. Hilali, Emmanuel U. Onyegam, Dabraj Sarkar, Dharmesh Jawarani, and Rajesh A. Rao et al., “Single heterojunction solar cells on exfoliated flexible ~25 μm thick mono-crystalline silicon substrates”, APPLIED PHYSICS LETTERS, Vol. 102, pp. 163904, 2013.
[5-11] R.A. Rao, L. Mathew, S. Saha, S. Smith, D. Sarkar, and R. Garcia et al., “A NOVEL LOW COST 25μm THIN EXFOLIATED MONOCRYSTALLINE SI SOLAR CELL TECHNOLOGY”, Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, pp. 001504–001507, 2011.
[5-12] Miha Filipič,, Philipp Löper, Bjoern Niesen, Stefaan De Wolf, Janez Krč, Christophe Ballif, and Marko Topič, “CH3NH3PbI3 perovskite / silicon tandem solar cells: characterization based optical simulations”, OPTICS EXPRESS, Vol. 23, pp. A263–A278, 2015.