| 研究生: |
陳玉菁 Chen yuching |
|---|---|
| 論文名稱: |
航空公司修護人員供給規劃之研究 The planning of airline maintenance manpower supply |
| 指導教授: |
顏上堯
Shang-Yao Yan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 修護計劃 、人力供給 、啟發式求解架構 、混合整數規劃問題 |
| 外文關鍵詞: | Maintenance Scheduling, Manpower Supply |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在求解的方法上,由於本研究所構建的混合整數規劃模式之規模甚大,難以求得最佳解,故本研究進一步發展一啟發式求解架構。此架構主要分三階段,各階段構建一模式。第一階段模式是以不分機型最佳化之觀點進行系統最佳排班班次規劃,第二階段主要是進行各單機型之排班人力供給規劃,第三階段則是針對單機型之人力供給規劃結果加以改善,進行混合機型之排班人力供給規劃。前二階段之模式,皆定式為整數規劃問題,第三階段則定式為混合整數規劃問題。在啟發式求解架構各階段的模式求解上,本研究皆自行以C程式語言撰寫執行輸入檔,並配合使用CPLEX套裝數學規劃軟體協助求解。最後,本研究以國內之一航空公司實際的修護資料,進行本研究模式之實例測試與分析,再依分析之結果提出結論及建議。
It is essential for airlines to efficiently perform aircraft maintenance in order to ensure aviation safety and punctuality. In tradition, the maintenance scheduling, based on staff’s experiences, was performed using a simple schedule rule. This scheduling method is not only time-consuming but also inefficient. In particular, the resulting manpower supply does not easily meet the minimum requirements, possibly causing imbalance between supply and demand. In this research, we use mathematical programs and computer algorithms to develop suitable models and solution methods, in order to help airlines efficiently and effectively plan their maintenance schedules and manpower supplies, which are then useful for downstream maintenance crew assignments.
Because the problem size of the mixed integer programming model is expected to be huge, we developed a heuristic solution framework to solve the problem. The framework is divided into three stages. In the first two stages, two integer programs are formulated respectively. A mixed integer program is formulated in the third stage. The first model is used to determine the best shift plans. The second model is used to solve the maintenance manpower supply problem for each aircraft type. The third model helps simultaneously solve the maintenance manpower supply problem for mixed aircraft types, based on the fact that maintenance crew members are practically qualified for repairing different aircraft types in a work shift. We solve all stages by using the mathematical programming solver, CPLEX, and other self-developed computer programs. Finally, to evaluate the models and solution algorithms developed in the research, we perform a case study using the operating data from a major Taiwan airline. The results show that the models and the solution methods are useful.
1.王勇華,「人員排班問題啟發式解法之應用」,交通大學土木工程研究所碩士論文,1993。
2.杜宇平,「空服員排班網路模式之研究」,中央大學土木工程研究所博士論文,2000。
3 .李宇欣、楊承道,「雙勤務人員排班問題」,運輸計劃季刊,第28卷,第3期,第409-420頁,1999。
4 .李治綱、陳朝輝、郭彥秀,「台鐵司機員排班與輪班問題之研究」,中華民國第五屆運輸網路研討會論文集,第177-187頁,2000。
5 .連志平,「警察人員排班問題之研究」,交通大學土木工程研究所碩士論文,1998。
6 .陳春益、李宇欣與盧華安,「飛機調度與定期維修整合模式之研究」,運輸計劃季刊,第二十六卷,第一期,第69-94頁,1997。
7 .顏上堯、林錦翌,「空服員排班組合最佳化之研究」,中國土木水利工程學刊,第九卷,第二期,第303-314頁,1997。
8 .顏上堯、羅智騰,「因應預期性航具維修之系統性飛航排程」,中國土木水利工程學刊,第八卷,第三期,第447-456頁,1996。
9 .顏上堯、翁綵穗,「季節轉換間緩衝期飛航排程之研究」,運輸計劃季刊,2000。(已接受)
10.蘇昭銘、張靖,「捷運系統站務人員排班模式之研究」,中華民國運輸學會第十三屆論文研討會論文集,第613-622頁,1998。
11.Alfares, H. K., “An Efficient Two-Phase Algorithm For Cyclic Days-Off Scheduling,” Computers Operational Research, Vol. 25, No.11, pp.913-923, 1998.
12. Aykin, T., “A Comparative Evaluation of Modeling Approaches to the Labor Shift Scheduling Problem,” European Journal of Operational Research, Vol.25, pp.381-397, 2000.
13. Bartholdi, J. J., “A Guaranteed-Accuracy Round-off Algorithm for Cyclic Scheduling and Set Covering,” Operations Research, Vol.29, pp.501-510, 1981.
14. Beasley, J. E., and Cao, B., “A Tree Search Algorithm for the Crew Scheduling Problem,” European Journal of Operational Research, Vol. 94, No. 3, pp. 517-526, 1996.
15. Beaumont, N., “Scheduling Staff using Mixed Integer Programming,” European Journal of Operational Research, Vol. 98, pp.473-484, 1997.
16. Bechtold, S. E., Brusco, M. J., and Showalter, M. J., “A Comparative Evaluation of Labor Tour Scheduling Method,” Decision Sciences, Vol. 22, pp.683-699, 1991.
17. Brusco, M. J., “Solving Personnel Tour Scheduling Problems Using the Dual All-integer Cutting plane,” IIE Transaction, Vol. 30, pp.835-844, 1998.
18. Brusco, M. J., and Jacobs, L. W., “Elimination Redundant Columns in Continuous Tour Scheduling Problems,” European Journal of Operational Research, Vol. 111, pp. 518-525,1998.
19. Brusco, M. J., and Johns, T. R., “A Sequential Integer Programming Method for Discontinuous Labor Tour Scheduling,” European Journal of Operational Research, Vol. 95, pp.537-548, 1996.
20. Brusco, M. J., and Johns, T. R., “Improving the Dispersion of Surplus Labor in Personnel Scheduling Solutions,” Computers and Industrial Engineering, Vol. 28, No. 4, pp. 745-754, 1998.
21. Caprera, A., Fischetti, M., Toth, P., Vigo, D., and Guida, P. L., “Algorithms for Railway Crew Management,” Mathematical Programming, Vol. 79, pp.125-141, 1997.
22. Easton, F. F., and Rossin, D. F., “Equivalent Alternate Solutions for the Tour Scheduling Problem,” Decision Sciences, Vol. 22, pp. 985-1007, 1991.
23. Higgins, A., “Scheduling of Railway Track Maintenance Activities and Crews,” Journal of the Operational Research Society, Vol. 49, pp.1026-1033, 1998.
24. Hoong, C. L., “On the Complexity of Manpower Shift Scheduling,” Computers and Industrial Engineering, Vol. 23, No. 1, pp. 93-102, 1996.
25. Langerman, J. J., and Ehlers, E. M., “Agent — Based Airline Scheduling,” Computers and Industrial Engineering, Vol. 33, No.3-4, pp. 849-852, 1997.
26. Morris, J. G., and Showalter, M. J., “Simple Approaches to Shift, Days-Off and Tour Scheduling Problems,” Management Science, Vol. 29, No. 8, pp. 942-950, 1983.
27. Narasimhan, R., “An Algorithm for Single Shift Scheduling of Hierarchical Workface,” European Journal of Operational Research, Vol. 96, pp.113-121, 1996.
28. Lucic, P., and Teodorovic, D., “A Fuzzy Set Theory Approach to the Aircrew Rostering Problem,” Fuzzy Set and System, Vol.95, pp. 261-271, 1998.
29.Lucic, P., and Teodorovic, D., “Simulated Annealing for the MultiObjective Aircrew Rostering Problem,” Transportation Research A, Vol. 33, pp. 19-45, 1999.
30. Ryan, D. M., “The Solution of Massive Generalized Set Partitioning Problem in Aircrew Rostering,” Journal of the Operational Research Society. Vol. 43, pp. 459-467, 1992.
31. Yan, S., and Chang, J. C., “Airline Cockpit Crew Scheduling,” European Journal of Operational Research, 2000.(accepted)
32. Yan, S., Tang, T. T., and Tu, Y. P., “Optimal Construction of Airline Individual Crew Pairings,” Computers and Operations Research, 2000. (accepted)