| 研究生: |
吳明修 Ming-Hsiu Wu |
|---|---|
| 論文名稱: |
高濃度有機化學品混合液以不同高級氧化程序處理後之效能比較探討 -以某化工廠為例 |
| 指導教授: |
林居慶
Chu-Ching Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 臭氧 、過氧化氫 、化學需氧量 、硫酸鹽 、硝酸鹽氮 、氨氮 |
| 外文關鍵詞: | ozone, hydrogen peroxide, chemical oxygen demand, sulfate, nitrate nitrogen, ammonia nitrogen |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以某提供半導體及光電產業電子級化學品之化工廠為實例,探討將混有高濃度的各類化學品廢液以不同高級氧化程序作為預處理的可行性與效能比較。此研究之緣由為該廠如以既有的臭氧設備單獨進行廢水處理時,發現最終化學需氧量(COD)仍高達3,000 mg/L、去除率僅為49.2%,顯示處理效果不佳,因此本研究嘗試將臭氧與其他常見之高級氧化方法整併,應用不同的參數調整及疊加設計,試圖提升原有臭氧設備之效能,所納入的高級氧化方式包括UV / H2O2與芬頓(Fenton)反應。試驗結果以COD的去除率而言,處理效果依次為UV / H2O2 / O3 > UV / H2O2 > UV / H2O2 / Fe2+ > UV / O3,顯示UV / H2O2 / O3 的整合系統最適合去除該廠的高濃度有機化學品混合液。此UV / H2O2 / O3 系統的最佳操作結果為:初始COD = 6,060 mg/L、UV波長185 nm與254 nm、初始pH = 7.63、O3 = 32 g/hr、流速2 L/min、H2O2添加量72.72 g/L,反應8小時後COD去除率為98.2 %。此外,本研究發現除了COD去除可接近放流標準值,對於初始pH 4 ~ 7之條件下,此程序對於硝酸鹽氮及氨氮的降解並不顯著,應為廢液中之硝酸鹽類屬於高氧化態之含氮物種,故已無法與自由基反應氧化,而在8小時反應時間內,氨氮去除率所得之最佳結果為45 %。另設計搭配不同高級氧化程序進行參數調整之研究,在反應初期過程其pH皆呈現下降趨勢,可能原因為Fenton將Fe2+氧化成Fe3+容易與氫氧化物反應,造成酸累積,而後段反應產生碳酸氫根,導致pH值逐漸增加至8左右。對於硫酸根的變化,初始調整pH值則會造成硫酸根殘留量偏高達4,200 mg/L,而廢液中亞硫酸鹽應該是DMSO分解後產生的副產物,因此檢測硫酸根之變化可作為除臭之參考。最後,若以批次容量1噸設計、每月處理22噸計,此UV / H2O2 / O3系統回收年限約1.45年,其效益大於委外處理。
This study focuses on a chemical plant that provides electronic-grade chemicals for the semiconductor and optoelectronic industries. It explores the feasibility and effectiveness of using different advanced oxidation processes as pre-treatment for high-concentration chemical waste liquids. The motivation for this study stems from the inadequate results obtained when using the existing ozone equipment alone for wastewater treatment. The final chemical oxygen demand (COD) was still as high as 3,000 mg/L with a removal rate of only 49.2%. Therefore, this study attempts to enhance the efficiency of the existing ozone equipment by integrating it with other commonly used advanced oxidation methods, including UV/H2O2 and Fenton reactions. The experimental results show that in terms of COD removal rate, the treatment effectiveness follows the order of UV/H2O2/O3 > UV/H2O2 > UV/H2O2/Fe2+ > UV/O3, indicating that the UV/H2O2/O3 integrated system is most suitable for removing high-concentration organic chemical mixtures in the plant. The optimal operating conditions for this UV/H2O2/O3 system are as follows: initial COD = 6,060 mg/L, UV wavelengths of 185 nm and 254 nm, initial pH = 7.63, O3 = 32 g/hr, flow rate = 2 L/min, and H2O2 addition amount = 72.72 g/L. After 8 hours of reaction, the COD removal rate reaches 98.2%. Furthermore, this study finds that in addition to achieving COD removal close to the desired effluent standard, the process has insignificant degradation effects on nitrate nitrogen and ammonia nitrogen under initial pH conditions of 4 to 7. This is likely because the nitrate in the waste liquid belongs to highly oxidized nitrogen-containing species, making it no longer susceptible to oxidation by free radicals. Within the 8-hour reaction time, the optimal ammonia nitrogen removal rate obtained is 45%.
Additionally, a study on parameter adjustment using different advanced oxidation processes shows a decreasing trend in pH during the initial stage of the reaction. This may be due to the accumulation of acids caused by the oxidation of Fe2+ to Fe3+ in the Fenton reaction, which readily reacts with hydroxide ions. In the later stage of the reaction, bicarbonate ions are produced, leading to an increase in pH to around 8. Changes in sulfate ions indicate that adjusting the initial pH can result in a relatively high residual sulfate concentration of up to 4,200 mg/L. The presence of sulfite ions in the waste liquid is likely a byproduct of DMSO decomposition, making the monitoring of sulfate ion changes a reference for deodorization. In conclusion, if designed with a batch capacity of 1 ton and a monthly treatment capacity of 22 tons, the UV/H2O2/O3 system has an investment payback period of approximately 1.45 years, making it more beneficial than outsourcing treatment.
1. Ruppert, Gerald, Rupert Bauer, and Günter Heisler. "UV-O3, UV-H2O2, UV-TiO2 and the photo-Fenton reaction-comparison of advanced oxidation processes for wastewater treatment." Chemosphere 28.8 (1994): 1447-1454.
2. Clawson, A. R. "Guide to references on III–V semiconductor chemical etching." Materials Science and Engineering: R: Reports 31.1-6 (2001): 1-438.
3. Parsons, Simon, ed. Advanced oxidation processes for water and wastewater treatment. IWA publishing, 2004.
4. Albert, Roland. Treatment of industrial wastewater by fenton process combine with coagulation. Diss. UMP, 2010.
5. Amr, Salem S. Abu, and Hamidi Abdul Aziz. "New treatment of stabilized leachate by ozone/Fenton in the advanced oxidation process." Waste management 32.9 (2012): 1693-1698.
6. Arslan, Idil, Işil Akmehmet Balcioǧlu, and Detlef W. Bahnemann. "Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes." Dyes and pigments 47.3 (2000): 207-218.
7. Babuponnusami, Arjunan, and Karuppan Muthukumar. "A review on Fenton and improvements to the Fenton process for wastewater treatment." Journal of Environmental Chemical Engineering 2.1 (2014): 557-572.
8. Garrido-Cardenas, José Antonio, et al. "Wastewater treatment by advanced oxidation process and their worldwide research trends." International Journal of Environmental Research and Public Health 17.1 (2020): 170.
9. Córdova, Rolando Nunes, et al. "Removal of organic matter and ammoniacal nitrogen from landfill leachate using the UV/H2O2 photochemical process." Environmental technology 40.6 (2019): 793-806.
10. Cortez, Susana, et al. "Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments." Journal of environmental management 92.3 (2011): 749-755.
11. Duyar, Ahmet, and Kevser CIRIK. "Textile wastewater treatment with Ozone/Fenton process: Effect of pH." Kahramanmaras Sutcu Imam University Journal of Engineering Sciences 19.3 (2016): 76-81.
12. Gong, Jianli, Yongdi Liu, and Xianbo Sun. "O3 and UV/O3 oxidation of organic constituents of biotreated municipal wastewater." Water research 42.4-5 (2008): 1238-1244.
13. Hassanshahi, Nahid, and Ayoub Karimi-Jashni. "Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water." Ecotoxicology and environmental safety 161 (2018): 683-690.
14. Hu, Xiaolian, et al. "A comparative study of UV–Fenton, UV–H2O2 and Fenton reaction treatment of landfill leachate." Environmental technology 32.9 (2011): 945-951.
15. Jiang, Chengchun, et al. "A new insight into Fenton and Fenton-like processes for water treatment." Journal of hazardous materials 174.1-3 (2010): 813-817.
16. Ksibi, Mohamed. "Chemical oxidation with hydrogen peroxide for domestic wastewater treatment." Chemical Engineering Journal 119.2-3 (2006): 161-165.
17. Lee, Yunho, Changha Lee, and Jeyong Yoon. "Kinetics and mechanisms of DMSO (dimethylsulfoxide) degradation by UV/H2O2 process." Water Research 38.10 (2004): 2579-2588.
18. Lin, Sheng H., and Cho C. Lo. "Fenton process for treatment of desizing wastewater." Water research 31.8 (1997): 2050-2056.
19. Lin, Li, et al. "Removal of ammonia nitrogen in wastewater by microwave radiation." Journal of hazardous materials 161.2-3 (2009): 1063-1068.
20. Liu, Ze, Kristof Demeestere, and Stijn Van Hulle. "Comparison and performance assessment of ozone-based AOPs in view of trace organic contaminants abatement in water and wastewater: A review." Journal of Environmental Chemical Engineering 9.4 (2021): 105599.
21. Liu, Yangxian, et al. "Investigation on the removal of NO from SO2-containing simulated flue gas by an ultraviolet/Fenton-like reaction." Energy & fuels 26.9 (2012): 5430-5436.
22. Liu, Hong, et al. "A novel electro-Fenton process for water treatment: reaction-controlled pH adjustment and performance assessment." Environmental science & technology 41.8 (2007): 2937-2942.
23. de Luna, Mark Daniel G., et al. "Comparison of dimethyl sulfoxide degradation by different Fenton processes." Chemical engineering journal 232 (2013): 418-424.
24. Luo, Hongwei, et al. "Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review." Chemical Engineering Journal 407 (2021): 127191.
25. Oliviero, L., J. Barbier Jr, and D. Duprez. "Wet air oxidation of nitrogen-containing organic compounds and ammonia in aqueous media." Applied Catalysis B: Environmental 40.3 (2003): 163-184.
26. Raj, CB Chidambara, and Han Li Quen. "Advanced oxidation processes for wastewater treatment: Optimization of UV/H2O2 process through a statistical technique." Chemical Engineering Science 60.19 (2005): 5305-5311.
27. Rayaroth, Manoj P., et al. "Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions-a serious environmental issue: A review." Chemical Engineering Journal 430 (2022): 133002.
28. Talinli, I., and G. K. Anderson. "Interference of hydrogen peroxide on the standard COD test." Water research 26.1 (1992): 107-110.
29. Tomar, Mamta, and Tamama HA Abdullah. "Evaluation of chemicals to control the generation of malodorous hydrogen sulfide in waste water." Water Research 28.12 (1994): 2545-2552.
30. Wang, Jian Long, and Le Jin Xu. "Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application." Critical reviews in environmental science and technology 42.3 (2012): 251-325.
31. Wu, Yangtao, et al. "Mini review on the roles of nitrate/nitrite in advanced oxidation processes: Radicals transformation and products formation." Journal of Cleaner Production 273 (2020): 123065.
32. Yasar, Abdullah, Nasir Ahmad, and Aamir Amanat Ali Khan. "Energy requirement of ultraviolet and AOPs for the post‐treatment of treated combined industrial effluent." Coloration technology 122.4 (2006): 201-206.
33. 王春盛 半導體高濃度廢水之高級氧化處理與有機廢液之異丙醇回收. 元智大學,2002
34. 吳采芳 超音波結合芬頓程序處理廢水中難分解有機物: 以化工廠廢水為例.國立交通大學,2012.
35. 李庭瑋 利用紫外線/過氧化氫程序處理水溶液中含氮物質之研究.國立臺灣科技大學,2016
36. Chung-Yi Lin UV/H2O2結合三效蒸發及光芬頓處理高濃度COD有機廢水之研究.南華大學科技學院,2020
37. Yu-Wen Lin 使用UV-Fenton及UV-SPS-Fe2+探討不同水質條件對雙酚A降解之影響.國立中興大學,2021
38. 邱文輝 光電產業周界空氣中異味二甲基硫及氯氣特徵分析.國立屏東科技大學,2013
39. 許涵喻 活性污泥池之二甲基亞楓 (DMSO) 體積負荷與二甲基硫 (DMS) 轉化率之相關硏究.國立中山大學,2012
40. 陳伯全 以高級氧化程序礦化水中對-硝基苯酚之研究.國立中央大學,2014
41. 陳奕翰 半導體晶圓製造之去光阻液配方開發.明新科技大學,2013
42. 曾彥儒 以 Fenton 法探討自由基與有機物之反應機制.國立雲林科技大學,2015
43. 黃俊程 光電半導體製程中光阻剝離液之主成份分析.明新科技大學,2018
44. 紀博文,提升平面顯示器廠去光阻劑回收率之探討.元智大學,2007
45. 孫瑞聰,上流式厭氧污泥床裂解光電業TMAH廢水之研究.崑山科技大學環境研究所碩士論文,2012
46. 俞庭旭,積體電路製造業含TMAH廢水厭氧生物處理之起動策略研究.國立交通大學,2016