| 研究生: |
林尚儀 Shang-I Lin |
|---|---|
| 論文名稱: |
永續道路工程影響因子與人力推估模式之建立 |
| 指導教授: |
陳介豪
Jieh-Haur Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木系營建管理碩士班 Master's Program in Construction Management, Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 永續性道路影響因子 、因素分析 、專案工程人力 、約略集 、類神經網路 |
| 外文關鍵詞: | sustainable road construction, factor analysis, human allocation, rough set, artificial neural network |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
永續道路工程影響因子與人力推估模式
摘要
公共建設是推動國家總體經濟發展常用作法,道路工程為主要項目之一,隨著全球氣候變遷加劇,世界各國開始意識到永續發展之重要性。從道路工程全生命週期的角度來看,包含規劃、設計、施工及後續的維護管理等各階段,又因為道路工程往往須投注相當可觀之經費與社會成本,所以在規劃設計階段,即應從「永續」觀點計算投注的總體成本到未來的預期效益,進行完整的成本效益評估。而在進入施工階段後,則因為人力短缺情形日益嚴重,產生工程落後、影響完工期程等現象,並衍生履約爭議問題。
本研究第1階段利用問卷調查方式,發放了120份問卷並針對所回收之54樣本,採用敘述性統計分析刪除無效因子,再以因素分析萃取出之潛伏因素,分析後獲得成本方面有3個潛伏因素,包括9個因子,效益方面有2個潛伏因素,包括6個因子。其目的在確立永續性道路工程影響因素及量化影響程度與權重,供道路工程從業人員在規劃設計階段中納入考量,確保永續概念的有效落實。第2階段則利用類神經網路及約略集加上類神經網路的方法,建立評估專案工程人力的2種評估模式,其中約略集加上類神經網路的評估模式,具有88.63%的平均準確率,足已有效證明其可行性,期藉由本研究所建立的模型,應可以在專案工程人力分配預估上,成為一個有用的工具,並可對專案工程主辦機關提出預警機制,有效避免人力短缺現象產生。
關鍵詞:永續性道路影響因子、因素分析、專案工程人力、約略集、類神經網路。
Identifying and developing impact factors and human allocation model for sustainable road construction
ABSTRACT
This research is firstly to identify impact factors in both cost and benefit aspects using quantitative techniques and then to determine their corresponding weights for sustainable road engineering projects. The second objective is to develop a human allocation model for sustainable road construction based on the findings from the first goal. The impact factors are initially gathered from literature review and expert interviews, resulting in a total of 10 factors for questionnaire development. A 5-scale Likert questionnaire is accordingly developed for a survey. With the fulfillment of statistical criteria, 54 of 120 questionnaires are returned and a reliability test is employed to examine sampling adequacy in the beginning stage of data analysis. Therefore, we are able to identify the impact factors by the use of eight tests of missing value, mean, standard deviation, skewness, t-testing, correlation coefficients, factor loading, and measures of sampling adequacy (MSA). To determine the weight of each factor, the principle component analysis combined with orthogonal rotation best fit this research. Therefore, the analysis yields the results showing that 3 components include 9 factors in the cost aspect and 2 components include 6 factors in the benefit aspect. The finding is anticipated to benefit practitioners in the designing, planning, budgeting, and controlling phases of road engineering projects.
Based on the finding, a database for assessing human resource allocation in pavement engineering was established by collecting detailed information from various construction projects. Fourteen influence factors were summarized through literature review and consultation with experts in the field. Thirty two road-smoothing projects were then randomly selected. Using the rough set approach and an artificial neural network model, a model for assessing human resource allocation in pavement engineering was developed. The model validity is verified by an average accuracy of 88.63%. Therefore, this proposed model can be viewed as a useful tool for estimating human resource demand in pavement engineering. It can also effectively alert the authority to avoid a shortage in manpower, preventing the construction project from falling behind schedule or even early termination as a result of inappropriate resource allocation.
Keywords: sustainable road construction, human allocation, questionnaire survey, factor analysis, rough set, pavement engineering, artificial neural network.
參考文獻
中文文獻:
王進德、蕭大全,1994。類神經網路與模糊控制理論控制入門,台北市:全華科技圖書股份有限公司。
吳明隆,2011。SPSS統計應用學習實務:問卷分析與應用統計,新北市:易習圖書。
行政院公共工程委員會,2004。建立道路工程綠營建審議指標之研究。
行政院公共工程委員會,2008a。永續公共工程-節能減碳政策白皮書。
行政院公共工程委員會,2008b。建立永續公共工程指標系統之研究。
行政院經濟建設委員會,2004。台灣二十一世紀議程國家永續發展願景與策略綱領。
行政院經濟建設委員會,2006。我國94-104年科技人力供需分析。
周文賢,2004。多變量統計分析-SAS/STAT使用方法,台北市:智勝文化。
林家豪,2003。營造廠現場管理人力配置之研究,國立台灣科技大學營建工程系碩士論文。
柯國慶,1992。工程專案管理架構與實務運用--以個案公司為例--,國立中興大學企業管理研究所碩士論文。
黃榮堯、葉政黌、許維庭,2006。道路建設綠營建評估指標系統之研究,技術學刊。
黃榮堯、郭瓊瑩,2002。綠營建政策推動策略及藍圖之研究,行政院公共工程委員會研究報告。
黃俊維,2006。營建工程現場之人力配置決策模式,國立中央大學營建管理研究所碩士論文。
莊秉元,2005。工地管理人力規劃之研究-以學校建築工程為例,國立清華大學工業工程與工程管理研究所碩士論文。
張志國,2005。營造工地管理人資量化與預測,國立中央大學土木工程研究所碩士論文。
傅心家,1993。神經網路導論,台北市:第三波文化事業股份有限公司。
邱志洲、李天行、周宇超、呂奇傑,2002。整合鑑別分析與類神經網路在資料探勘上之應用,工業工程學刊,第十九卷第二期。9-22 。
邱志洲、田政祺、周宇超,2005。資料探勘中集群模式與分類模式之建構-模糊自適應共振理論網路、分類迴歸樹與類神經網路之整合與應用,工業工程學刊,第二十二卷第二期,171-188。
陳韋向,2013。營建專案人力配置最佳化及參與時序模式建立,國立中央大學營建管理研究所博士論文。
葉怡成,1999。類神經網路模式與應用實作,台北市:儒林書局。
蔡厚男、邱銘源、呂慧穎,2003。道路建設與生態工法,新北市:熊貓出版社。
鄭香豐,1998。綜合營造廠人力資源規劃與配置模式之研究,國立臺灣大學土木工程學研究所碩士論文。
英文文獻:
Ahmadi, A., and Golpasha, H. (2004). Knowledge management in a sustainable green infrastructure. Proceedings of International Conference on Information and Knowledge Engineering, IKE 2008, 436-440.
Albanese, R., Ferris, G.R., and Russ, G.S. (1991). Survey of human-recourses practices in U.S. construction firms, Journal of Management in Engineering. 7(1): 59-69.
Beer, M. (1985). Human resource management: A general manager's perspective : text and cases, New York : Free Press.
Belout, A., and Gauvreau, C. (2004). Factors influencing project success: the impact of human resource management, International Journal of Project Management. 22(1) :1-11.
Bernold, L. E., Lee, T. S., Koo, J. K., and Moon, D. S. (2010). Automated eco-friendly road stripe removal system. Automation in Construction, 19(6): 694-701.
Beyer, C., Konrad, W., Rügner, H., Bauer, S., Liedl, R., and Grathwohl, P. (2009). Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Management, 29(2): 839-850.
Brandenburg, S.G., Haas, C.T., and Byrom, K. (2006). Strategic management of human resources in construction, Journal of Management in Engineering. 22(2): 89-96.
Boswell, C., Stiller, S. and Straubhaar, T. (2004). Forecasting Labour and Skills Shortages: How Can Projections Better Inform Labour Migration Policies? European Commission Research Paper, Hamburg.
Burns, M. and Shanahan, M. (2000). Labour Market Models and Their Use in Projecting Vocational Education and Training Requirements, National Centre for Vocational Education Research (NCVER), Australia.
Campos, N. F., Hughes, G., Shanahan, S., and Münich, M. D. (1999a). When the Future Is Not What It Used to Be: Lessons from the Western European Experience to Forecasting Education and Training in Transition Economies, Working Paper Number 265.
Campos, N. F., Hughes, G., Shanahan, S., and Münich, M. D. (1999b). Forecasting Education and Training Needs in Transition Economies: Lessons from the Western European Experience, in: Olga Strietska-Ilina and Daniel Münich (ed.). 9-40.
Cattell, R. B. (1996). The scree test for the number of factors. Multivariate Behavioraal Research. 1: 245–276.
Chen, G., Kirkman, B. L., Kim, K., Farh, CI. C., and Tangirala, S. (2010c). When Does Cross-Cultural Motivation Enhance Expatriate Effectiveness? A Multilevel Investigation of the Moderating Roles of Subsidiary Support and Cultural Distance. Academy of Management Journal 53(5): 1110-1130.
Chen, J. H. (2012a). A hybrid knowledge-sharing model for corporate foreign investment in China's construction market, Expert Systems with Applications. 39(9): 7585-7590.
Chen, J. H. (2012b). Developing SFNN model to predict financial distress for construction companies, Expert Systems with Applications. 39(1): 823-827.
Chen, J. H., and Hsu, S. C. (2007). Hybrid ANN-CBR model for disputed change orders in construction projects, Automation in Construction. 17(1): 56-64.
Chen, J. H., and Hsu, S. C. (2008). Quantifying impact factors of corporate financing: engineering consulting firms, Journal of Management in Engineering, 24(2): 96-140.
Chen, J. H., and Lin, J. Z. (2011). Exploring the impact: employees’ work intension for international projects, Applied Mechanics and Materials. 94-96: 2280-2283.
Chen, J. H., Su, M. C., and Huang, D. Y. (2010b). Application of SOM-based optimization algorithm in minimizing construction time for secant pile wall, ASCE Journal of Construction Engineering and Management, 136(11): 1189-1195.
Chen, J. H., Su, M. C., Chen, C. Y., Hsu, F. H., and Wu, C. C. (2011). Application of neural networks in detecting erroneous tax reports for construction companies, Automation in Construction. 20(7): 935-939.
Chen, J. H., Su, M.C., Zhao, Y. X., Hsieh, Y.J., and Chen, W. H. (2008a). Application of SOMO based clustering in building renovation, International Journal of Fuzzy Systems. 10(3) : 195-201.
Chen, J. H., Yang, L. R., Chen, W. H., and Chang, C. K. (2008b). Case-based allocation of onsite supervisory manpower for construction projects, Construction Management and Economics. 26(8): 803-812.
Chen, J. H., Yang, L. R., Su, M.C., and Lin, J.Z. (2010a). A rule extraction based approach in predicting derivative use for financial risk hedging by construction companies, Expert Systems with Applications. 37(9): 6510-6514.
Cheng, M. Y., Tsai, M. H., and Xiao, Z. W. (2006). Construction management process reengineering: organizational human resource planning for multiple projects, Automation in Construction. 15(6): 785-799.
Chiu, H. C. (2004). Quantitative research and statistical analysis in social and behavioral sciences. Taipei, Taiwan: Wunan.
Darido, G. B. (2003). Regulation of road-based public transportation and strategies for the developing world. Transportation Research Record, 1835: 66-73.
Dekker, R., De Grip, A., and Heijke, H. (1994). Indicating the Future Labour Market Prospects of Occupational Groups and Types of Education in the Netherlands. Forecasting the labour market by occupation and education. Boston: Kluwer Academic.
Delen, D., Walker, G., and Kadam, A. (2005). Predicting breast cancer survivability:a comparison of three data mining methods,Artificial Intelligence in Medicine, 34: 13-127.
Dostal, W. (1999). Forecasting Methodology for Qualification and Training Needs in the Labour Market in Germany, in: National Observatory of Vocational Training and Labour Market, 95-112.
Douglas, J. B. (1992). Scientific and Technical Employment, 1990-2005, Monthly Labor Review, 28-41.
Druker, J., Wite, G., Hegewisch, A., and Mayne, L. (1996). Between hard and soft HRM: human resource management in the construction industry, Construction Management and Economics. 14(5): 405-416.
Formbtun, C. (1984). Strategies HRM, New York: Wiley.
Freeman, J. A. and Skapura, D. M. (1991). Neural Networks Algorithms, Applications, and Programming Techniques, Michigan: Addison-Wesley Publishing Company.
Fuchs, J. and Tessaring, M. (1994). Medium and Long-term Forecasting of Employment in Germany, in: Hans Heijke (ed.), 37-53.
Gareis, R. (2005). Happy projects!. Vienna: Manz.
Geng, Z., and Zhu, Q. (2009). Rough set-based heuristic hybrid recognizer and its application in fault diagnosis. Expert Systems with Applications 36(2): 2711-2718.
Gorsuch, R. L. (1983). Factor analysis, Hillsdale, NJ: Lawrence Erlbaum Associates.
De Grip, A. and Heijke, H. (1998). Beyond Manpower Planning: ROA’s Labour Market Model and Its Forecasts to 2002, ROA-W-1998/6E, Maastricht: ROA.
De Grip, A. and Marey, P. (1999). Country report on Labour Market Forecasting in the Netherlands”, in: National Observatory of Vocational Training and Labour Market, 43-53.
Huang, R. Y., Mao, I. S., and Lee, H. K. (2010). Exploring the deterioration factors of RC bridgedecks: a_rough set approach, Computer-Aided Civil and Infrastructure Engineering. 25(7): 517-529.
Hung, Y. H. (2009). A neural network classifier with rough set-based feature selection to classify multiclass IC package products, Advanced Engineering Informatics. 23(3):348-357.Intelligent Laboratory Systems, 47: 1-16.
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23.3: 187-200.
Kaiser, H. F. (1970). A second-generation Little Jiffy. Psychometrika, 35(4):401-415.
Kaiser, H. F.(1974) Little Jiffy, Mark IV. Educational and Psychometrika Measurement, 34: 111-117.
Kohavi, R.(1995). A study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Appears in the International Joint Conference on Artificial Intelligence(LJCAI), 1137-1145.
Lai, D.N.C., Liu, M., and Ling, F.Y.Y. (2011). A comparative study on adopting human resource practice for safety management on construction project in the United States and Singapore, International Journal of Project Management. 29(8): 1018-1032.
Lederer, A., and Sethi,V. (1991). Critical Dimensions of Strategic Informationing, Decision Science, 22: 104-119 .
Lin, K. L. (2011). Human resource allocation for remote construction projects, Journal of Management in Engineering. 27(1): 13-20.
Meagher, G. A. and Parmenter, B. R. (1996a). Future Workforce Skills: Projections with the Monash Model, Centre of Policy Studies and the Impact Project, No. G-116.
Meagher, G. A. and Parmenter, B. R. (1996b), Economic Modelling and the National Strategy for Vocational Education and Training”, Centre of Policy Studies and the Impact Project, No. G-117.
Pawlak, Z. (1999). Rough set theory for intelligent industrial applications, Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials IPMM, 37–44.
Pawlak, Z.(1982). Rough sets. International Journal of Computer and Information Science, 11(5): 341-356.
Peters, J., McGurrin, M., Shank, D., and Cheslow, M. (1997). An estimate of transportation cost savings from using intelligent transportation system (ITS) infrastructure. ITE Journal, 67(11): 42-47.
Peters, T. and Austin, N. (1985). A Passion for Excellence: The Leadership Difference, New York: Warner Books.
Raiden, A.B., Dainty, A.R.J., and Neale, R.H. (2006). Balancing employee needs, project requirements and organizational priorities in team deployment, Construction Management and Economics. 24(8): 883-995.
Raiden, A.B., Dainty, A.R.J., and Neale, R.H. (2008). Understanding employee resourcing in construction organizations, Construction Management and Economics. 26(11): 1133-1143.
Rumelhart, D.E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations by error propagation, Parallel Distributed Processing, 1. Cambridge,MA:MIT Press.
Sheppeck, M.A., and Militello, J. (2000). Strategic HR configuration and organizational performance, Human. Resources Management. 39(1): 5-16.
Shyng, J. Y., Shieh, H. M., Tzeng, G. S.,and Hsieh, S. H.(2010). Using FSBT technique with rough set theory for personal investment portfolio analysis. European Journal of Operational Research, 201(2), 601-607.
Sólnes, J. (2003). Environmental quality indexing of large industrial development alternatives using AHP. Environmental Impact Assessment Review, 23(3): 283-303.
Su, M. C., Huang, D. Y., Chen, J. H., Lu, W. Z., Tsai, L. C., and Lin, J. Z. (2011). Mapping multi-spectral remote sensing images using rule extraction, Expert Systems with Applications. 38(10): 12917-12922.
Tabassi, A.A., and Bakar, A.H.A. (2009). Training, motivation, and performance: the case of human resource management in construction projects in Mashhad, Iran, International Journal of Project Management. 27(5): 471-480.
Tam, C. M., Tong, T. K. L., and Chan, K. K. (2006). Rough set theory for distilling construction safety measures, Construction Management and Economics. 24(11): 1199-1206.
Thenoux, G., and González, Á., and Dowling, R. (2007). Energy consumption comparison for different asphalt pavements rehabilitation techniques used in Chile. Resources, Conservation and Recycling, 49(4): 325-339.
Van Leest, A. J., and Van Harstkamp, S. B., ang Meijer, J. P. R. (2009). Decision support model for road pavements based on whole life costing, life cycle assessment and multi-criteria analysis. Carreteras, 4 (166): 28-41.
Vellido, A., Lisboa P. J. G and Vaughan, J. (1999). Neural networks in business: a survey of applications(1992-1998). Expert Systems with Applications, 17: 51-70.
Walczak, B., and Massart, D. L. (1999). Tutorial Rough Set Theiry. Chemometrics and
Wang, P. C. (2004). Multivariate analysis: Statistical package and data analysis, Advanced Education. Taipei, Taiwan.
Wang, X., Yang, J., Jensen, R., and Liu, X.( 2006). Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma. Computer Methods and Programs in Biomedicine 83(2): 147-156.
Willems, E. (1996). Manpower Forecasting and Modeling Replacement Demand: An Overview, ROA-W-1996/4E, Research Centre for Education and the Labour Market, Maastricht.
Wilson, R. (1994). Modelling and Forecasting the Structure of Employment in the United Kingdom. 9-35.
Yang, Y. and Zhang, Q. (1998). The Application of Neural Networks to Rock Engineering System (RES), International Journal Rock Mechanics and Mining Sciences, 35(6) : 727-745.
Yang, H., and Wu, C. (2009). Rough sets to help medical diagnosis – evidence from a Taiwan’s clinic. Expert Systems with Applications. 36(5): 9293-9298.
Yeon, I. S., Kim, J. H., and Jun, K.W. (2008). Application of artificial intelligence models in water quality forecasting, Environmental Technology. 29(6): 625-631.
Zhai, L., Khoo, L., and Zhong, Z.( 2009). A rough set based QFD approach to the management of imprecise design information in product development. Advanced Engineering Informatics 23(2): 222-228.
Zhang, Z., and Xu, Z. (2009). Rough set method to identify key factors affecting precipitation in Lhasa. Stochastic Environmental Research and Risk Assessment 23(8): 1181-1186.