跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林宏哲
LIN HONG ZHE
論文名稱: PFC3D探討互層岩體之力學行為
指導教授: 田永銘
Yong Ming Tien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 234
中文關鍵詞: 互層岩體數值模擬單軸壓縮試驗三軸壓縮試驗破壞模態
外文關鍵詞: interlayered rock, numerical simulations, uniaxial compressive strength, triaxial compressive strength, failure modes
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用PFC3D模擬互層岩體單壓及三軸試驗之力學行為,並觀察岩石內部的裂縫發展過程及破壞模態。此外,本文亦針對PFC3D之微觀參數,進行宏觀岩體力學行為之參數研究。模擬結果顯示,PFC3D模擬互層岩體之力學行為與田永銘等人(1996)實驗相符;於圍壓=0 MPa,強度異向性顯示為「肩膀型」,而圍壓=2.5、5.0及10 MPa時,岩體強度則會隨著傾角增加而增加。最後,本文將互層岩體破壞模態分為三類,分別為(1)滑動破壞、(2)張裂破壞及(3)剪力破壞。
    關鍵字:互層岩體、數值模擬、單軸壓縮試驗、三軸壓縮試驗、破壞模態


    This paper used PFC3D to simulate interlayered rocks mechanical behaviors under uniaxial compressive test and triaxial compressive test, and observed fracture propagations. In addition, this paper also investigated micro-parametric studies for macro-mechanical behaviors. The simulation results show that the anisotropic mechanical behaviors from numerical simulations are compared well with Tien et al. (1996); the strengths anisotropy shows “the shoulder type” at confining pressure (C.P.) = 0 MPa. But at C.P. = 2.5, 5.0, 10 MPa, the strengths of interlayered rocks increase with increasing inclination angle θ. Finally, this paper proposed three failure modes, (1) sliding failure, (2) tensile split failure, and (3) shear failure.
    Keyword: interlayered rock, numerical simulations, uniaxial compressive strength, triaxial compressive strength, failure modes

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 IX 符號表 XXI 第一章 緒論 1 1.1研究動機 1 1.2研究目的 1 1.3研究方法 2 1.4論文架構 2 第二章 文獻回顧 4 2.1 PFC3D之相關研究 4 2.2岩體之破壞模態 8 2.3岩體之破壞準則 10 第三章PFC軟體介紹 41 3.1 PFC程式概述 41 3.2 PFC軟體之特色 41 3.3 Distinct-Element Method(DEM) 離散元素法 42 3.4 PFC的基本假設有下列幾點 42 3.5 PFC計算方式 43 3.6力與位移的關係 43 3.7運動定律 45 3.8 PFC3D接觸組成模式介紹 47 第四章 單一材料力學行為 54 4.1 建模順序 54 4.2單一材料之單軸壓縮試驗 60 4.2.1加載速率的影響 60 4.2.2 D/d(顆粒數)的影響分析 61 4.2.3參數研究 62 4-3單一材料之三軸壓縮試驗 68 4.3.1參數研究 69 4.4田永銘等人(1996)實驗與模擬結果比較 72 第五章 互層岩體力學行為 103 5.1互層岩體之單軸壓縮試驗 103 5.1.1破壞模態 108 5.1.2破壞過程 112 5.1.3參數研究 116 5.1.4實驗與模擬結果比較圖 120 5.2互層岩體之三軸壓縮試驗 121 5.2.1參數研究 121 5.2.2實驗與模擬結果比較圖 126 第六章 結論與建議 170 6-2 建議 171 參考文獻 172 附錄 176 Ⅰ單一材料B之單壓模擬結果 176 Ⅱ單一材料B之三軸模擬結果 192 Ⅲ互層單壓附錄表 202

    1. 田永銘、王仲宇、王仁正、賴逸少,「人造異向性岩體製作及其力學性質(I)」,行政院國家科學委員會專題研究計畫成果報告,中壢(1995)。
    2. 田永銘、許宗傑、陳慶洪,「人造異向性岩體製作及其力學性質(II)」,行政院國家科學委員會專題研究計畫成果報告,中壢(1996)。
    3. 田永銘、趙柏烽、楊世和,「人造異向性岩體製作及其力學性質(III)」,行政院國家科學委員會專題研究計畫成果報告,中壢(1997)。
    4. 李宏輝,「砂岩力學行為之微觀機制-以個別元素法探討」,博士論文,國立臺灣大學土木工程研究所,臺北(2008)。
    5. 黃宗義,「人造互層岩體之組成律及破壞準則」,碩士論文,國立中央大學土木工程研究所,中壢(1994)。
    6. 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木工程研究所,中壢(2005)。
    7. Barton, N. R., “The shear strength of rock and rock joints,” International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 13, No. 10, pp. 1-24 (1976).
    8. Donath, F. A., “Strength variation and deformation behavior in anisotropic rock,” In State of Stress in the Earth’s Crust, Eds. Judd, W.R., Elsevier, Amsterdam, pp. 280-297 (1964).
    9. Esmaieli, K., and Hadjigeorgiou, J., and Grenon, M., “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine, ”International Journal of Rock Mechanics & Mining Sciences, Vol.47,pp.910-926 (2010).
    10. Elkadiand, A.S.K. and Yenigul, N.B., “Experimental and Numerical Investigation into Stress Induced Failure in Hollow-Cylinder Tests and Its Size Dependence,” International Conference on Advances in Geotechnical Engineering, (2011).
    11. Holt, R.M., and Kjolaas, J., and Larsen ,I., and Lib, L., and Gotusso Pillitteri, A., and Sonstebo ,E.F., “Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock, ” International Journal of Rock Mechanics & Mining Sciences, Vol.42,pp.985-995 (2005).
    12. Hadjigeorgiou, J., and Esmaieli ,K., and Grenon,M., “Stability analysis of vertical excavations in hard rock by integrating a fracturesystem into a PFC model, ”Tunnelling and Underground Space Technology, Vol.24,pp.296-308 (2009).
    13. Hoek, E. and Brown, E.T., Underground Excavations in Rock, Institution of Mining and Metallurgy, London, pp. 137-162 (1980).
    14. Hoek, E., “Strength of jointed rock masses,” 23rd Rankine Lecture,
    Geotechnique, Vol. 33, No. 3, pp. 187-223 (1983).
    15. Hoek, E., and Brown, E. T., “The Hoek-Brown failure criterion, In rock engineering for underground excavations,” Proc. of 15th Canadian rock mech.Symp., Eds Curran, J. C., pp. 31-38 (1988).
    16. Itasca Consulting Group, Particle Flow Code in3 Dimensions,Version 4.0.,Itasca Consulting Group Inc., Minneapolis, USA (2008).
    17. Jung, W.P., and Jae, J.S., “Numerical simulation of a direct shear test on a rock joint using a bonded-particle model, ” International Journal of Rock Mechanics & Mining Sciences, Vol.46,pp.1315-1328 (2009).
    18. Jaeger, J.C., “Shear failure of anisotropic rocks,” Geol. Mag., Vol. 97, pp. 65-72 (1960).
    19. McLamore, R., and Gray, K. E., “The mechanical behavior of anisotropic sedimentary rocks,” Journal of Engineering for Industry, Trans. of the ASME,Vol. 89, pp. 63-73 (1967).
    20. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock, ” International Journal of Rock Mechanics & Mining Sciences, Vol.41,pp. 1329-64 (2004).
    21. Potyondy,D.O., “Simulating stress corrosion with a bonded-particle model for rock, ” International Journal of Rock Mechanics & Mining Sciences, Vol.48,pp.677-691 (2007).
    22. Sadek, M.A., and Chen, Y., and Liu, J., “Simulating shear behavior of a sandy soil under different soil conditions, ”Journal of Terramechanics Vol.48,pp.451-458 (2011).
    23. Su ,O, and Akcin N. A., “Numerical simulation of rock cutting using the discrete element method, ” International Journal of Rock Mechanics & Mining Sciences, Vol.48,pp.434-442 (2011).
    24. Tien, Y. M., and Tsao, P. F., “Preparation and mechanical properties ofartificial transversely isotopic rock,” International Journal of Rock mechanics and Mining Sciences, Vol. 37, pp. 1001-1012 (2000).
    25. Tien, Y. M., and Kuo, M. C., “A failure criterion for transversely isotropic rocks,” International Journal of Rock mechanics and Mining Sciences, Vol.38, pp. 399-412 (2001).
    26. Tien, Y. M., and Kuo, M. C., and Juang, C. H., “An experimental investigation of the failure mechanism of simulated transversely isotropic rocks,” International Journal of Rock mechanics and Mining Sciences, Vol.43, pp. 1163-1181 (2006).
    27. Wang, Y, and Tonon, F., “Modeling Lac du Bonnet granite using a discrete element model, ” International Journal of Rock Mechanics & Mining Sciences, Vol.46,pp.1124-1135 (2009).
    28. Wang ,C., and Tannant ,D.D., and Lilly P.A., “Numerical analysis of the stability of heavily jointed rock slopes using PFC2D, ” International Journal of Rock Mechanics & Mining Sciences, Vol.40,pp.415-423 (2003).
    29. Whittles ,D.N., and Kingman, S., and Lowndes, I., and Jackson, K. , “Laboratory and numerical investigation into the characteristics of rock fragmentation, ” Minerals Engineering Vol.19,pp.1418-1429 (2006).
    30. Zhang, Q., and Zhu, H., and Zhang, L., and Ding, X., “Study of scale effect on intact rock strength using particle flow modeling, ” International Journal of Rock Mechanics & Mining Sciences, Vol.48,pp.1320-1328 (2011).

    QR CODE
    :::