跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳奕勳
Yi-Hsun Chen
論文名稱: 嗜酸熱硫化葉菌酮醇酸還原異構酶與輔酶共晶體結構及活性分析
Cofactor bi-specificity in Sulfolobus acidocaldarius Ketol-Acid Reductoisomerase as revealed by two crystal structures and enzyme activity assays
指導教授: 陳青諭
Chin-Yu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 87
中文關鍵詞: 嗜酸熱硫化葉菌酮醇酸還原異構酶蛋白質結晶學輔酶雙特異性
外文關鍵詞: Sulfolobus acidocaldarius, Ketol-acid reductoisomerase, X-ray crystallography, Cofactor bi-specificity
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    酮醇酸還原異構酶(KARI) 是支鏈胺基酸(BCAA) 生物合成途徑中的第二個酵素,
    為雙功能酶可進行兩步驟的催化反應。第一步進行鎂離子專一性的異構反應,隨後為輔
    酶NAD(P)H 與鎂離子或其他二價金屬離子(錳離子或鈷離子) 依賴性的還原反應。在
    先前研究結果,已得知嗜酸熱硫化葉菌的KARI (Sac-KARI) 具有熱穩定性與輔酶雙專
    一性,可以利用NADPH 與NADH 兩種輔酶進行催化反應,且相對偏好於NADPH 。
    在本次研究中,我們利用X-ray 蛋白質晶體繞射,解析出Sac-KARI-NADPH 與
    Sac-KARI-NADH 兩種複合物晶體結構,解析度分別為2.72 Å 與 1.68 Å 。分析
    Sac-KARI 與兩種輔酶複合物結構,發現於活化位β2αB-loop 構形並無明顯改變,但在
    Sac-KARI-NADH 結構中發現來自母液的磷酸根佔據了相對於Sac-KARI-NADPH 結
    構中NADPH 的2 端磷酸根基團的位置。並於高溫的酵素動力學實驗,比較不同的緩
    衝液(HEPES 與磷酸鹽) 對Sac-KARI 相對活性的影響。其結果表示當酵素在使用
    NADH 時,在緩衝液含有磷酸根離子環境中,會有相對較高的活性。證實了磷酸根或
    是硫酸根離子是可以幫助Sac-KARI 在使用NADH 時的催化活性 。


    Abstract
    Ketol-acid reductoisomerase (KARI) is the second enzyme in branched chain amino acid
    (BCAA) biosynthetic pathway. The catalytic reaction of this bi-functional enzyme is consisted
    of two steps, including Mg2+-dependent alkyl migration, followed by the
    NAD(P)H-dependent reduction reaction. In the previous study, we found that KARI from
    Sulfolobus acidocaldarius (Sac-KARI) is a thermostable and bi-cofactor-utilizing enzyme. In
    this study, we determined two crystal structures of Sac-KARI-NADPH (2.72 Å) and
    Sac-KARI-NADH (1.68 Å) complexes. The crystal structural analysis shows that R49
    undergoes the typical π-cation stacking interaction against the adenine ring and forms a salt
    bridge with the 2´-phosphate of the NADPH. The S53 forms H bonds both with 2´-phosphate
    and 3´-OH of the NADPH. The R49 and S53 make similar contacts with NADH, however, the
    phosphate ions mimic the 2´-phosphate of NADPH in the cofactor binding pocket. The
    enzyme activity assays further confirm that the Sac-KARI has higher activity in the phosphate
    than that in the HEPES buffer at 50ºC by using NADH as a cofactor. On the other hand, the
    optimum pH for Sac-KARI activity is in the pH range of 7-7.5 at 50ºC.

    目錄 中文摘要 ....................................................................................................................................I 英文摘要 .................................................................................................................................. II 致謝.........................................................................................................................................III 目錄 .........................................................................................................................................IV 圖目錄 ................................................................................................................................... VII 表目錄 .....................................................................................................................................IX 第一章、緒論 ...........................................................................................................................1 1-1 嗜酸熱硫化葉菌(Sulfolobus acidocaldarius) .......................................................1 1-2 酮醇酸還原異構酶....................................................................................................2 1-2-1 支鏈胺基酸(Branched-Chain Amino Acids, BCAA) 的生物合成途徑.....2 1-2-2 酮醇酸還原異構酶的催化機制....................................................................3 1-2-3 酮醇酸還原異構酶的分類方式與結構介紹................................................3 1-2-4 相關應用........................................................................................................6 1-3 研究動機....................................................................................................................9 第二章、實驗內容與方法.....................................................................................................10 2-1 建構目標蛋白質基因(Sac-KARI) 於載體(pET-21a) ......................................10 2-1-1 從嗜酸熱硫化葉菌全基因體中萃取出目標基因......................................10 2-1-2 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 引子設計.............. 11 2-1-3 限制酶切割反應(Digestion) ....................................................................13 2-1-4 連接反應(Ligation) ..................................................................................14 2-1-5 勝任細胞(Competent cell) ........................................................................14 2-1-6 轉形作用(Transformation) .......................................................................15 2-1-7 菌落聚合酶連鎖反應(Colony PCR) .......................................................15 2-1-8 利用瓊脂糖凝膠電泳(Agarose gel electrophoresis) 確認目標基因.......17 2-1-9 核酸定序檢測(Sequencing) .....................................................................18 2-2 蛋白質表現(Protein expression) .........................................................................19 2-2-1 篩選表現條件之時程實驗(Time Course) ...............................................19 2-2-2 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE) .............................19 2-2-3 大量表現蛋白質..........................................................................................21 2-3 蛋白質純化(Protein purification) ........................................................................22 2-3-1 利用超音波細胞破碎儀(Ultrasonic Processor) 破壞細菌細胞...............22 2-3-2 加熱處理......................................................................................................22 2-3-3 離心及過濾去除沉澱蛋白質......................................................................23 2-3-4 固定化金屬親和性層析法..........................................................................23 2-3-5 濃縮蛋白質(Concentrate protein) ............................................................25 2-3-6 凝膠過濾法(Gel filtration, Size Exclusion Chromatography) .................26 2-4 利用X-ray 蛋白質晶體繞射解析結構..................................................................27 2-4-1 蛋白質結晶(Crystallization) ....................................................................27 2-4-2 預長晶測試實驗(Pre-crystallization Test, PCT) ......................................28 2-4-3 高通量篩選蛋白質長晶條件......................................................................30 2-4-4 收集晶體繞射數據(Data collection) .......................................................31 2-4-5 利用電腦軟體分析數據(Refinement) .....................................................32 2-5 蛋白質活性測試......................................................................................................34 2-5-1 輔酶 (Coenzyme) 製備...............................................................................34 2-5-2 受質(Substrate) 製備.................................................................................34 2-5-3 酵素活性實驗..............................................................................................35 第三章、實驗結果.................................................................................................................36 3-1 核酸定序檢測..........................................................................................................36 3-2 蛋白質表現..............................................................................................................37 3-3 蛋白質純化..............................................................................................................38 3-4 蛋白質晶體繞射之結構解析..................................................................................40 3-4-1 蛋白質結晶條件..........................................................................................40 3-4-2 蛋白質結構解析..........................................................................................46 3-5 蛋白質活性測試......................................................................................................51 3-5-1 Sac-KARI 對鈣離子利用之酵素活性測試.................................................51 3-5-2 Sac-KARI 在不同pH 值中之酵素活性測試............................................53 3-5-3 Sac-KARI 在不同緩衝液中之酵素活性測試.............................................56 第四章、討論.........................................................................................................................58 4-1 比較Sso-KARI 與Sac-KARI 在不同pH 值下的酵素活性變化...................58 4-2 分析不同KARI 活化位上之胺基酸側鏈使用輔酶催化之策略........................59 4-3 Sac-KARI 活化位在催化過程中的誘導契合機制................................................63 第五章、結論.........................................................................................................................67 參考文獻 .................................................................................................................................68 附錄 .........................................................................................................................................71 圖目錄 圖 1、三域演化樹。...............................................................................................................1 圖 2、支鏈胺基酸的生物合成途徑。...................................................................................2 圖 3、KARI 兩步驟的催化反應。.....................................................................................3 圖 4、Sso-KARI-NADPH-CPD 之活化位上的結構細節。..............................................5 圖 5、對KARI 的β2αB-loop 序列比對與分類歸納。....................................................6 圖 6、基因工程大腸桿菌的生物合成途徑以生產異丁醇。...............................................7 圖 7、在KARI 催化反應中的受質、中間物及其類似物。.............................................8 圖 8、載體pET-21a 圖譜之重組與表現區段。................................................................ 11 圖 9、限制酶剪切反應之序列與切口處, NdeI (左) , XhoI (右) 。..........................13 圖 10、細菌生長曲線圖。...................................................................................................21 圖 11、Ni-NTA 與目標蛋白質上的His-tag 結合示意圖。.........................................24 圖 12、親和性層析之蛋白質純化流程示意圖。...............................................................24 圖 13、凝膠過濾法之原理示意圖。...................................................................................26 圖 14、蛋白質結晶過程之相變圖。...................................................................................28 圖 15、蒸氣擴散法(座式) 示意圖。.................................................................................28 圖 16、輕微沉澱(Light Precipitate) 與嚴重沉澱(Heavy Amorphous Precipitate)。.....29 圖 17、單孔式96 孔坐式養晶盤。...................................................................................30 圖 18、NAD(P)H 氧化還原形式之340 nm 特徵峰的變化。.......................................35 圖 19、Sac-KARI 蛋白質表現之實驗步驟圖。..............................................................37 圖 20、Sac-KARI 親和性層析法純化結果。..................................................................38 圖 21、Sac-KARI 膠體過濾法純化結果。......................................................................39 圖 22、以Coomassie blue 染色15% SDS-PAGE 來分析Sac-KARI 的純度。..........39 圖 23、Sac-KARI-NADPH 複合物及其活化位的結構。...............................................49 圖 24、Sac-KARI-NADH 複合物及其活化位的結構。.................................................50 圖 25、Sac-KARI 對5 mM 鎂離子之酵素活性測試。.................................................52 圖 26、Sac-KARI 對10 mM 鈣離子之酵素活性測試。...............................................52 圖 27、Sac-KARI 對20 mM 鈣離子之酵素活性測試。...............................................53 圖 28、Sac-KARI 對30 mM 鈣離子之酵素活性測試。...............................................53 圖 29、在25℃ ,不同pH 值的緩衝液中Sac-KARI 利用兩種輔酶的相對活性。.54 圖 30、在50℃ ,不同 pH 值的緩衝液中Sac-KARI 利用兩種輔酶的相對活性。.55 圖 31、在25℃ ,三種不同緩衝液中 Sac-KARI 利用兩種輔酶的相對活性。..........56 圖 32、在50℃ ,三種不同緩衝液中 Sac-KARI 利用兩種輔酶的相對活性。..........57 圖 33、在55℃ ,不同pH 值的緩衝液中Sso-KARI 利用兩種輔酶的相對活性。.58 圖 34、Sac-KARI-NAD(P)H 複合物之β2αB-loop 結構疊圖。 ...................................59 圖 35、Ia-KARI-NADPH 複合物之活化位結構。..........................................................61 圖 36、Ia-KARI-NADH 複合物之活化位結構。............................................................61 圖 37、Ia-KARI-NAD(P)H 複合物之β2αB-loop 結構疊圖。......................................62 圖 38、Sso-KARI-NAD(P)H-CPD 複合物之β2αB-loop 結構疊圖。 ..........................63 圖 39、Sac-KARI-NAD(P)H 對Sac-KARI 之N domain 比對。.................................65 圖 40、Sac-KARI-NAD(P)H 對Sac-KARI 之C domain 比對。.................................65 表目錄 表 1、比較Class I 與Class II KARI 的結構組成。.........................................................4 表 2、對輔酶雙特異性或對輔酶NADH 偏好的KARI 。..............................................9 表 3、Sac-KARI 聚合酶鏈鎖反應配方。........................................................................12 表 4、Sac-KARI 聚合酶鏈鎖反應步驟。........................................................................12 表 5、限制酶剪切反應配方。.............................................................................................13 表 6、接合酶黏合反應配方。.............................................................................................14 表 7、Sac-KARI 菌落聚合酶鏈鎖反應配方。................................................................16 表 8、Sac-KARI 菌落聚合酶鏈鎖反應步驟。................................................................16 表 9、50X TAE Buffer 配製方法。....................................................................................17 表 10、15% SDS-PAGE 膠片配方與不同分子量的蛋白質所適合之膠體濃度。........20 表 11、SDS-PAGE 實驗所使用之緩衝液配方。.............................................................20 表 12、PCT 試劑成分。....................................................................................................29 表 13、PCT 結果與操作建議。........................................................................................29 表 14、Sac-KARI-NADPH-CPD 長晶條件編號與照片。...............................................40 表 15、Sac-KARI-NADPH 長晶條件編號與照片 (1)。................................................41 表 16、Sac-KARI-NADPH 長晶條件編號與照片 (2)。................................................42 表 17、Sac-KARI-NADH 長晶條件編號與照片(1)。...................................................43 表 18、Sac-KARI-NADH 篩選結晶之蛋白質樣品條件與結果(2) ~ (8)。..................44 表 19、Sac-KARI-NADH 長晶條件編號與照片(6)。...................................................44 表 20、手動養晶微調[10.2]-96 結晶條件。....................................................................45 表 21、Sac-KARI-NADH 長晶條件編號與照片(8)。...................................................45 表 22、X-ray 繞射數據收集與處理之參數以及上機晶體的照片。..............................47 表 23、在25℃ ,不同pH 值的緩衝液中Sac-KARI 利用兩種輔酶的酵素專一活性。 .................................................................................................................................................54 表 24、在50℃ ,不同pH 值的緩衝液中Sac-KARI 利用兩種輔酶的酵素專一活性。 .................................................................................................................................................55 表 25、在25℃ ,三種不同緩衝液中 Sac-KARI 利用兩種輔酶的酵素專一活性。..56 表 26、在50℃ ,三種不同緩衝液中 Sac-KARI 利用兩種輔酶的酵素專一活性。..57 表 27、比較不同物種KARI 與配體結合前後的構形變化。.........................................66

    1. Brock, T. D.; Brock, K. M.; Belly, R. T.; Weiss, R. L., Sulfolobus: A new genus of
    sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie
    1972, 84 (1), 54-68.
    2. Chen, L.; Brügger, K.; Skovgaard, M.; Redder, P.; She, Q.; Torarinsson, E.; Greve, B.;
    Awayez, M.; Zibat, A.; Klenk, H.-P.; Garrett, R. A., The Genome of Sulfolobus
    acidocaldarius, a Model Organism of the Crenarchaeota. Journal of Bacteriology 2005,
    187, 4992-4999.
    3. Andersson, A. F.; Lundgren, M.; Eriksson, S.; Rosenlund, M.; Bernander, R.; Nilsson, P.,
    Global analysis of mRNA stability in the archaeon Sulfolobus. Genome Biology 2006, 7
    (10), R99.
    4. Vothknecht, U. C.; Tumbula, D. L., Archaea: from genomics to physiology and the origin
    of life. Trends in Cell Biology 1999, 9 (4), 159-161.
    5. Chen, C.-Y.; Ko, T.-P.; Lin, K.-F.; Lin, B.-L.; Huang, C.-H.; Chiang, C.-H.; Horng, J.-C.,
    NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from
    Sulfolobus acidocaldarius. Scientific Reports 2018, 8 (1), 7176.
    6. Wong, S.-H.; Lonhienne, T. G. A.; Winzor, D. J.; Schenk, G.; Guddat, L. W., Bacterial and
    Plant Ketol-Acid Reductoisomerases Have Different Mechanisms of Induced Fit during
    the Catalytic Cycle. Journal of Molecular Biology 2012, 424 (3), 168-179.
    7. Chen, C.-Y.; Chang, Y.-C.; Lin, B.-L.; Lin, K.-F.; Huang, C.-H.; Hsieh, D.-L.; Ko, T.-P.;
    Tsai, M.-D., Use of Cryo-EM To Uncover Structural Bases of pH Effect and Cofactor
    Bispecificity of Ketol-Acid Reductoisomerase. Journal of the American Chemical Society
    2019, 141 (15), 6136-6140.
    8. Brinkmann-Chen, S.; Flock, T.; Cahn, J. K. B.; Snow, C. D.; Brustad, E. M.; McIntosh, J.
    A.; Meinhold, P.; Zhang, L.; Arnold, F. H., General approach to reversing ketol-acid
    reductoisomerase cofactor dependence from NADPH to NADH. Proceedings of the
    National Academy of Sciences 2013, 110, 10946-10951.
    9. Park, J. H.; Lee, S. Y., Fermentative production of branched chain amino acids: a focus on
    metabolic engineering. Appl Microbiol Biotechnol 2010, 85 (3), 491-506.
    10. Atsumi, S.; Cann, A. F.; Connor, M. R.; Shen, C. R.; Smith, K. M.; Brynildsen, M. P.;
    Chou, K. J. Y.; Hanai, T.; Liao, J. C., Metabolic engineering of Escherichia coli for
    1-butanol production. Metabolic Engineering 2008, 10 (6), 305-311.
    11. Atsumi, S.; Hanai, T.; Liao, J. C., Non-fermentative pathways for synthesis of
    branched-chain higher alcohols as biofuels. Nature 2008, 451 (7174), 86-89.
    12. Atsumi, S.; Wu, T.-Y.; Eckl, E.-M.; Hawkins, S. D.; Buelter, T.; Liao, J. C., Engineering
    the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde
    reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 2010, 85 (3), 651-657.
    13. Bastian, S.; Liu, X.; Meyerowitz, J. T.; Snow, C. D.; Chen, M. M. Y.; Arnold, F. H.,
    Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic
    2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metabolic
    Engineering 2011, 13 (3), 345-352.
    14. Nissen, T. L.; Anderlund, M.; Nielsen, J.; Villadsen, J.; Kielland-Brandt, M. C.,
    Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in
    formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 2001, 18 (1),
    19-32.
    15. Amorim Franco, T. M.; Blanchard, J. S., Bacterial Branched-Chain Amino Acid
    Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry 2017, 56 (44),
    5849-5865.
    16. Patel, K. M.; Teran, D.; Zheng, S.; Kandale, A.; Garcia, M.; Lv, Y.; Schembri, M. A.;
    McGeary, R. P.; Schenk, G.; Guddat, L. W., Crystal Structures of Staphylococcus aureus
    Ketol-Acid Reductoisomerase in Complex with Two Transition State Analogues that Have
    Biocidal Activity. Chemistry – A European Journal 2017, 23 (72), 18289-18295.
    17. Dumas, R.; Cornillon-Bertrand, C.; Guigue-Talet, P.; Genix, P.; Douce, R.; Job, D.,
    Interactions of plant acetohydroxy acid isomeroreductase with reaction intermediate
    analogues: correlation of the slow, competitive, inhibition kinetics of enzyme activity and
    herbicidal effects. Biochemical Journal 1994, 301 (3), 813-820.
    18. Bayaraa, T.; Kurz, J. L.; Patel, K. M.; Hussein, W. M.; Bilyj, J. K.; West, N. P.; Schenk, G.;
    McGeary, R. P.; Guddat, L. W., Discovery, synthesis and evaluation of a novel ketol-acid
    reductoisomerase inhibitor. Chemistry – A European Journal 2020, n/a (n/a), doi:
    10.1002/chem.202000899.
    19. Brinkmann-Chen, S.; Cahn, J. K. B.; Arnold, F. H., Uncovering rare NADH-preferring
    ketol-acid reductoisomerases. Metabolic Engineering 2014, 26, 17-22.
    20. Wu, J. T.; Wu, L. H.; Knight, J. A., Stability of NADPH: effect of various factors on the
    kinetics of degradation. Clin Chem 1986, 32 (2), 314-319.
    21. De Ruyck, J.; Famerée, M.; Wouters, J.; Perpète, E. A.; Preat, J.; Jacquemin, D., Towards
    the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator
    of dehydrogenase enzymatic activity. Chemical Physics Letters 2007, 450 (1), 119-122.
    22. Cahn, Jackson K. B.; Brinkmann-Chen, S.; Spatzal, T.; Wiig, Jared A.; Buller, Andrew R.;
    Einsle, O.; Hu, Y.; Ribbe, Markus W.; Arnold, Frances H., Cofactor specificity motifs and
    the induced fit mechanism in class I ketol-acid reductoisomerases. Biochemical Journal
    2015, 468 (3), 475-484.
    23. Chen, C.-Y.; Chang, Y.-C.; Lin, B.-L.; Huang, C.-H.; Tsai, M.-D., Temperature-Resolved
    Cryo-EM Uncovers Structural Bases of Temperature-Dependent Enzyme Functions.
    Journal of the American Chemical Society 2019, 141 (51), 19983-19987.

    QR CODE
    :::