| 研究生: |
陳俊宇 Jyun-yu Chen |
|---|---|
| 論文名稱: |
輔助X光乳房攝影之擴散光學量測系統設計與驗證 Design and Verification of Diffuse Optical Measuring System Assisting in X-ray Mammography |
| 指導教授: |
潘敏俊
Min-Chun Pan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 儀器設計 、系統校正 、假體備置 、擴散光學量測 、乳房腫瘤檢測 |
| 外文關鍵詞: | phantom preparation., system calibration, instrument design, breast tumor detection, diffuse optical measurement |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為發展輔助X光乳房攝影之擴散光學量測系統,期望藉由雙成像系統的檢測形式,彌補X光乳房攝影檢測上之不足,以增加乳癌的篩檢率。本研究透過多通道光源和多通道光檢測器切換之掃描平台設計,在實驗室建立雙向式穿越掃描量測系統,此檢測裝置以兩個平板擠壓待測物,縮短光源在組織中傳遞的距離,以提高系統之檢測性,且藉由雙向光源投射與光檢測接收的形式,獲得大量的檢測資訊,作為後續影像重建計算所需。在量測系統檢測上,製作檢測專用之固態假體,並透過均質假體檢測,確認光源與光檢測各通道之檢測誤差,進而校正光功率量測曲線。此外,依不同形式之模擬腫瘤置入物,設計不同大小、不同光學係數對比度及不同深淺位置之非均質假體,經檢測結果比較均質與非均質量測曲線之差異,得知腫瘤置入物造成的光功率變化,藉此驗證量測系統對於光學係數差異之非均質假體具有檢測性。此外,為顯明NIR量測系統與X光乳房攝影為不同的檢測機制,研究中設計矩陣形式之不同光學係數液態與固態假體,驗證兩檢測系統之檢測機制差異,X光乳房攝影是區分假體之密度差異,提供本研究所發展之功能性雙成像檢測系統之正當性。
This study is to develop a diffuse optical measuring instrument to be incorporated with an X-ray mammography system for the aid of obtaining functional images to detect breast tumors. It is expected to use the dual modality imaging system for enhancing the diagnosis of breast tumors. In this thesis, a dual-direction scanning device to project illuminated NIR light with a multiple-channel switching for both sources and detectors was designed and constructed. The device is handled to compress breast-like phantoms by two slabs to shorten the distance between sources and detectors that may enhance the detection of system. Thus the measured intensity and even phase are used to reconstruct optical-property images. For obtaining reliable measurement data, a two-phase procedure was employed to calibrate each detection channel of the system. Three types of inhomogeneous phantoms by varying contrast, size and location of inclusions to background were prepared and tested to investigate the differentiation of measured NIR power with using the constructed instrument. As known, the mammography and the diffuse optical tomography are based upon various physics models, the former using X-ray to distinguish density, and the later using NIR to tell between different optical properties of tissues. Matrix-type phantoms were made and tested by a mammographic system and our constructed diffuse optical measuring instrument respectively to justify the dual-modality imaging system.
[1] L. Tabar, M. F. Yen, B. Vitak, H. H. Chen, R. A. Smith, and S. W. Duffy, “Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” Lancet, Vol. 361, pp. 1405–1410(2003).
[2] 行政院衛生署國民健康局,民國97年死因統計結果分析。(http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=10238&class_no=440&level_no=1)。
[3] B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast,” Radiology, Vol. 218, pp. 261–266(2001).
[4] M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surgery, Gynecology and obstetrics. Vol. 48, pp. 721-727(1929).
[5] B. L. Horecker, ”The absorption spectra of hemoglobin and its derivatives in the visible and near infrared regions,” Journal of biological chemistry, Vol. 148, pp. 173-183(1943).
[6] F. F. Jobsis, “Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science, Vol. 198, No. 4323, pp. 1264-1267 (1977).
[7] M. Cope, and D. T. Dely, ”System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Medical and biological engineering and computing, Vol. 26, pp. 289-294(1988).
[8] S. R. Arridge, and M. Schweiger, ”Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Applied optics, Vol. 34, No. 15, pp. 2683-2687(1995).
[9] H. Jiang, K. D. Paulsen, and U. L. Osterberg, ”Optical image reconstruction using dc data: simulation and experiments,” Physics in medicine and biology, Vol. 41, No. 12, pp. 1483-1498(1996).
[10] M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, ”Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Optics letters, Vol. 20, No. 5, pp. 426-428(1995).
[11] M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Medical sciences, Vol. 94, pp. 6468-6473(1997).
[12] B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, ”Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Optics letters, Vol. 1, No. 13, pp. 391-403(1997).
[13] Q. Zhu, M. Huang, N. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia, Vol. 5, No. 5, pp. 379- 388(2003).
[14] Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” Medical imaging, Vol. 28, No. 1, pp. 30-42(2009).
[15] D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE signal processing magazine ,Vol. 18, No. 6, pp. 57-75(2001).
[16] K. M. Case and P. F. Zweifel, Linear transport theory, Addison-wesley, MA, 1967.
[17] Wikipedia(http://zh.wikipedia.org/zh-tw/%E4%B9%B3%E8%85%BA).
[18] F. E. W. Schmidt, “Development of a time-resolved optical tomography system for neonatal brain imaging,” Ph.D. thesis, University college London(1999).
[19] B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration Spectroscopy,” Neoplasia,Vol. 2, pp. 26-40(2000).
[20] B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Optics letters, Vol. 4, No. 8, pp. 270-286(1999).
[21] G. Jarry, S. Ghesquiere, J. M. Maarek, F. Fraysse, S. Debray, Bui-Mong-Hung, and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. biomed. eng., Vol. 6, pp. 70–74(1984).
[22] R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,” Medical physics, Vol. 32, No. 4, pp. 1128-1139(2005).
[23] T. Yates, J. C Hebden, A. Gibson, N. Everdell1, S. R Arridge, and M. Douek, ”Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol., Vol. 50, No. 11, pp. 2503–2517(2005).
[24] A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, ‘‘Spatial and temporal analysis of human motor activity using noninvasive NIR topography,’’ Medical Physics, Vol. 22, No. 12, pp. 1997-2005(1995).
[25] E. M. C. Hillman, ”Optical brain imaging in vivo: techniques and applications from animal to man,” Journal of Biomedical Optics, Vol. 12, No. 5, pp. 051402(2007).
[26] Photomultiplier tubes user guide(http://www.hamamatsu.com/).
[27] 繆家鼎、徐文娟、牟同升主編,光電技術,五南書局,臺北市,民國92年。
[28] Optical switch hand book(http://www.diconfiberoptics.com/).
[29]. T.O. McBride, “Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis,” Ph.D. thesis, Dartmouth college(2001).
[30] 張格寧,「calibrated frequency-domain NIR diffuse optical tomography for tissue-mimicking phtantoms」,國立中央大學機械工程研究所,碩士論文,民國99年。
[31] Phantom reference(http://www.uh.edu/honors/_documents/posters-ur-day-2009/Rezaee , %20Panteha.pdf).
[32] J. Swartling, J. S. Dam, and S. Andersson-Engles, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Applied optics, Vol. 42, No. 22, pp. 4612-4620(2003).