跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃晟輔
Cheng-Fu Huang
論文名稱: 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究
指導教授: 費定國
George Ting-Kuo Fey
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 117
中文關鍵詞: 鈷酸鋰
外文關鍵詞: lithium cobalt oxide
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分兩部分,均以機械式熱處理法,分別將Li4Ti5O12 和Li4Mn5O12 塗佈
    於商用LiCoO2 陰極材料表面,期能改善商用LiCoO2 陰極材料於高充放電截止電
    壓及快速充放電速率下,循環穩定性不佳之缺點,以及電池於長循環測試後之熱
    安全性。首先針對各製程材料之電池性能進行測試,進而求出最佳製程條件;而
    後利用各項材料鑑定,對材料之各種物化性質進行探討;最後以循環伏安法分析
    材料氧化還原性質,並利用交流阻抗分析電池內阻之變化。
    於本論文中,吾人自行合成Li4M5O12 (M=Ti、Mn)作為塗佈物質,並用於處
    理商用FMC-LiCoO2 陰極材料。吾人藉由機械式熱處理法將其塗佈於LiCoO2 材
    料表面,藉由粉體緊密包覆形成一緊密的保護層,進而降低充放電過程中,電活
    性物質與電解質液間之接觸機會,減緩電極材料因與電解質液反應所造成之電容
    量衰退情形,由實驗結果發現,設定充放電截止電壓分別為4.40 V 和2.75 V,
    充放電速率為0.2 C,以1.0 wt.% Li4Ti5O12 煆燒450 ℃,持溫10 小時改質
    LiCoO2,其循環壽命為148 次,而以1.0 wt.% Li4Mn5O12 煆燒550 ℃,持溫10
    小時改質之LiCoO2,則循環壽命為125 次(未改質LiCoO2 材料之循環壽命僅有
    38 次)。以ESCA 分析LiCoO2 材料表層至90 nm 深處之元素縱深分佈,確實可
    發現塗佈物質中的鈦及錳元素存在,由XPS 圖譜可知,吾人所使用之塗佈物質
    與LiCoO2 反應而形成固態溶液。由DSC 測試結果可知,改質後材料之熱解溫度
    提高且放熱量降低,顯示材料之熱穩定性已獲得改善。由鈷溶解度測試結果可
    知,改質後材料之鈷溶解現象均較未改質材料低,顯示因鈷溶解現象所造成的電
    容量衰退獲得改善。由循環伏安法測試可知,改質後材料之氧化還原峰變得較為
    圓滑,顯示電極材料於充放電過程中之相變化程度可獲得減緩。由交流阻抗結果
    可知,改質後材料可降低電解質液間之總電阻,顯示此表面塗佈技術可減緩電極
    材料溶至電解質液中,進而增加電池循環穩定性。


    Presently, LiCoO2 is the most widely used cathode material in commercially
    available Li-ion batteries, due to its high energy density and good cycle life
    performance. However, the phase transformation from a hexagonal to monoclinic
    phase, occurring between 4.1 and 4.2 V, induces a nonuniform volume change along
    the c direction (~2 % expansion). This change eventually induces strains and extended
    defects between and within the particles, leading to the disconnection of electrical
    contact between particles and increased cell capacity fading. To overcome this
    problem, the LiCoO2 cathode material was surface treated with the Li4M5O12 (M=Ti,
    Mn) particles by a simple mechano-thermal process.
    The Li4M5O12 (M=Ti, Mn) material possesses enhanced electrochemical activity,
    good reversibility, zero-strain insertion, a very flat discharge-charge plateau and high
    cycle stability during the charge–discharge process. The advantages of this compound
    led us to focus on preparing Li4M5O12 (M=Ti, Mn) material as a coating material on
    commercial LiCoO2 particles by a simple mechano-thermal process and studying its
    electrochemical cell performance when charged at higher voltages.
    A mixed metal oxide formed as a compact coating over the LiCoO2 cathode
    particle to suppress the capacity fading caused by reactions with the electrolyte. The
    Li4Ti5O12 and Li4Mn5O12 coated LiCoO2 cathode delivered excellent cyclability for
    148 and 125 cycles, respectively, at a 0.2 C-rate between 4.40 and 2.75 V with charge
    retention to 80 % of FMC-LiCoO2.
    ESCA results revealed that the titanium and manganese ions of coating materials
    could be observed on the LiCoO2 surface. The XPS spectra showed the coating
    materials would react with LiCoO2 to form the LiMyCo1-yO2 (M=Ti, Mn) mixed metal
    oxide. The DSC results showed that the coated LiCoO2 significantly depressed
    exothermic activity and reduced heat generation at a highly delithiated state. In
    addition, Li4M5O12 (M=Ti, Mn) coated LiCoO2 has better thermal safety
    characteristics compared to the pristine LiCoO2 cathode material. The cobalt amounts
    dissolved in the electrolyte of the Li4M5O12 (M=Ti, Mn) coated LiCoO2 were less than
    the pristine one. Cyclic voltammetry revealed that the
    hexagonal-monoclinic-hexagonal phase transformations were retained for the coated
    cathode materials upon continuous cycling. Impedance spectra showed the electrolyte
    resistance of the coated cathode decreased ( Is this right, wouldn’t a film increase
    resistance) because the coating materials would form a thin-film on the cathode
    surface to protect the cathode from reacting with the electrolyte.

    目 錄 中文摘要.............................................................................................................I 英文摘要............................................................................................................II 誌謝.................................................................................................................. III 目錄..................................................................................................................IV 圖目錄.............................................................................................................VII 表目錄........................................................................................................... XIII 第一章 緒論...................................................................................................... 1 1.1 前言.............................................................................................. 1 1.2 鋰離子電池之發展背景簡介...................................................... 2 1.3 研究目的及架構.......................................................................... 5 第二章 文獻回顧.............................................................................................. 8 2.1 陰極材料之表面改質技術........................................................... 8 2.1.1 單一金屬氧化物表面改質陰極材料................................ 8 2.1.2 電活性物質表面改質陰極材料...................................... 28 2.1.3 複合金屬氧化物表面改質陰極材料.............................. 30 第三章 實驗方法............................................................................................ 40 3.1 實驗儀器設備............................................................................. 40 3.2 實驗藥品器材............................................................................. 41 3.3 實驗步驟..................................................................................... 42 3.3.1 以機械式熱處理法利用Li4Ti5O12 改質FMC-LiCoO2 陰 極材料............................................................................ 42 3.3.2 以機械式熱處理法利用Li4Mn5O12 改質FMC-LiCoO2 陰極材料......................................................................... 44 3.4 材料鑑定分析............................................................................ 48 V 3.4.1 X 光繞射( XRD )分析................................................... 48 3.4.2 掃描式電子顯微鏡分析................................................ 49 3.4.3 穿透式電子顯微鏡分析................................................. 49 3.4.4 化學分析電子能譜儀分析............................................. 49 3.4.5 微分掃描熱卡儀分析..................................................... 49 3.4.6 感應耦合電漿原子發散光譜分析................................. 50 3.5 材料電化學特性分析................................................................ 50 3.5.1 電池性能測試.................................................................. 50 3.5.2 慢速循環伏安分析.......................................................... 52 3.5.3 交流阻抗分析.................................................................. 53 第四章 結果與討論........................................................................................ 55 4.1 以Li4Ti5O12 改質商用LiCoO2 陰極材料之鑑定與電化學行為分 析................................................................................................. 55 4.1.1 以Li4Ti5O12 改質FMC-LiCoO2 材料之電池性能評估 .......................................................................................... 57 (A) 煆燒溫度變因......................................................... 58 (B) 塗佈物濃度變因..................................................... 59 (C) 煆燒時間變因......................................................... 62 (D) 特徵曲線測試......................................................... 63 4.1.2 XRD 分析...................................................................... 65 4.1.3 SEM 分析合成材料之表面型態.................................. 67 4.1.4 TEM 分析合成材料之表面型態.................................. 69 4.1.5 化學分析電子能譜儀測試........................................... 70 4.1.6 DSC 分析材料之熱穩定性........................................... 72 4.1.7 ICP-AES 分析電解質液中之鈷溶解度....................... 75 4.1.8 慢速循環伏安掃描分析............................................... 76 VI 4.1.9 交流阻抗之電化學測試............................................... 78 4.2 以Li4Mn5O12 改質商用LiCoO2 陰極材料之鑑定與電化學行為 分析............................................................................................ 84 4.2.1 以Li4Mn5O12 改質FMC-LiCoO2 材料之電池性能評估 .......................................................................................... 86 (A) 煆燒溫度變因......................................................... 86 (B) 塗佈物濃度變因..................................................... 87 (C) 煆燒時間變因......................................................... 89 (D) 特徵曲線測試......................................................... 91 4.2.2 XRD 分析...................................................................... 93 4.2.3 SEM 分析合成材料之表面型態.................................. 94 4.2.4 TEM 分析合成材料之表面型態.................................. 96 4.2.5 化學分析電子能譜儀測試........................................... 97 4.2.6 DSC 分析材料之熱穩定性........................................... 99 4.2.7 ICP-AES 分析電解質液中之鈷溶解度..................... 101 4.2.8 慢速循環伏安掃描分析............................................. 102 4.2.9 交流阻抗之電化學測試............................................. 103 第五章 結論.................................................................................................. 107 (A) 電池性能評估..................................................... 107 (B) X 光繞射分析..................................................... 107 (C) 掃描式及穿透式電子顯微鏡分析..................... 108 (D) 化學分析電子能譜儀分析................................. 108 (E) 微分掃描熱卡儀分析.......................................... 108 (F) 鈷溶解度測試...................................................... 109 (G) 循環伏安與交流阻抗掃描分析......................... 109 第六章 參考文獻.......................................................................................... 112

    01. 溫添進, 科學發展月刊, “鋰離子高分子電池之研究發展簡述”, 國立成
    功大學, 第29卷, 第7期, 498頁.
    02. “Battery Recall Update”, Adv. Batt. Technol., 25 No. 10, 4 (1989).
    03. D.W. Murphy, Mat. Res. Bull., 13, 1395 (1978).
    04. M. Armand, Materials for Advanced Batteries, D.W. Murphy , J.
    Broadhead, B.C.H. Steele, Eds, Plenum Press, New York, p.145 (1980).
    05. S. Basu, U. S. Patent, 4,423,125 (1983).
    06. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, Mater.
    Res. Bull., 15, 783 (1980).
    07. H.J. Orman and P.J. Wiseman, Acta. Cryst., 40, 12 (1984).
    08. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W.B. Ebner, and
    H.W. Lin, J. Power Sources, 21, 25 (1987).
    09. M.G.S.R. Thomas, W.I.F. David, J.B. Goodenough, and P. Grover, Mat.
    Res. Bull., 20, 1137 (1985).
    10. A. Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi, and M.
    Leonini, Solid State Ionics, 32-33, 398 (1989).
    11. J.M. Tarascon and D. Guyomard, J. Electrochem. Soc., 138, 2864 (1991).
    12. J.M. Tarascon and D. Guyomard, Electrochimica Acta, 38, 1221 (1993).
    13. A. Manthiram and J. Kim, Chem. Mater., 10, 2895 (1998).
    14. K. Zaghib, K. Striebel, A. Guerfi, J. Shim, M. Armand, and M. Gauthier,
    Electrochimica Acta, 50, 262 (2004).
    15. 林育潤, 蕭美慧, 陳金銘, “低成本高功率鋰電池正極材料”, 工業材料
    雜誌, 218期 (2005) .
    113
    16. 王志峰, 碩士論文, "鋰離子電池層狀結構陰極材料合成與改質研究",
    國立中央大學, 中華民國臺灣 (2003).
    17. J. Cho, T.J. Kim, Y.J. Kim, and B. Park, Angew. Chem. Int. Ed., 40, 3367
    (2001).
    18. J. Cho, T.J. Kim, Y.J. Kim, and B. Park, Electrochem. Solid State Lett., 4,
    A159 (2001).
    19. Z. Chen and J.R. Dahn, Electrochimica Acta, 49, 1079 (2004).
    20. H.J. Kweon, S.J. Kim, and D.G. Park, J. Power Sources, 88, 255 (2000).
    21. H.J. Kweon and D.G. Park, Electrochem. Solid-State Lett., 3, 128 (2000).
    22. H. Zhao, L. Gao, W. Qiu, and X. Zhang, J. Power Sources, 132, 195
    (2004).
    23. Y. Iriyama, H. Kurita, I. Yamada, T. Abe, and Z. Ogumi, J. Power Sources,
    137, 111 (2004).
    24. J. Cho, Y.J. Kim, and B. Park, Chem. Mater., 12, 3788 (2000).
    25. L. Liu, Z. Wang, H. Li, L. Chen, and X. Huang, Solid State Ionics,
    152–153, 341 (2002).
    26. D. Zhang, B. S. Haran, A. Durairajan, R.E. White, Y. Podrazhansky, and
    B.N. Popov, J. Power Sources, 91, 122 (2000).
    27. J. Cho, Y.J. Kim, T.J. Kim, and B. Park, J. Electrochem. Soc., 149, A127
    (2002).
    28. S. Oh, J.K. Lee, D. Byun, W.I. Cho, and B.W. Cho, J. Power Sources, 132
    249 (2004).
    29. G.T.K. Fey, Z.X. Weng, J.G. Chen, C.Z. Lu, T.P. Kumar, S.P. Naik, A.S.
    T. Chiang, D.C. Lee, and J.R. Lin, J. Appl. Electrochem., 34, 715 (2004).
    30. H. Cao, B. Xia, Y. Zhang, and N. Xu, Solid State Ionics, 176, 911 (2005).
    114
    31. G.T.K. Fey, J.G. Chena, and T.P. Kumar, J. Power Sources, 146, 250
    (2005).
    32. J.N. Reimers, E. Rossen, C.D. Jones, and J.R. Dahn, Solid State Ionics, 61,
    335 (1993).
    33. J.R. Dahn, U.V. Sacken, and C.A. Michal, Solid State Ionics, 44, 87
    (1990).
    34. G.T.K. Fey, C.Z. Lu, T.P. Kumar, and Y.C. Chang, Surface & Coatings
    Tech., 199, 22 (2005).
    35. J. Cho, G. Kim, H. Lim, C. Kim, and S.I. Yoo, Electrochem. Solid State
    Lett., 2, 607 (1999).
    36. G.G. Amatucci, A. Blyr, C. Siagala, P. Alfonse, and J.M. Tarascon, Solid
    State Ionics, 104, 13 (1997).
    37. G.G. Amatucci, US Pat., 5759720, 1997.
    38. J. Cho, T.J. Kim, Y.J. Kim, and B. Park, Chem. Comm., 1074 (2001).
    39. J. Cho, C.S. Kim, and S.I. Yoob, Electrochem. Solid State Lett., 3, 362
    (1999).
    40. Y.K. Sun, K.J. Hong, and J. Prakash, J. Electrochem. Soc., 150, A970
    (2003).
    41. D. Shu, G. Kumar, K.B. Kim, K.S. Ryu, and S.H. Chang, Solid State
    Ionics, 160, 227 (2003).
    42. J. Cho, Solid State Ionics, 160, 241 (2003).
    43. G.T.K. Fey, Z.F. Wang, C.Z. Lu, and T.P. Kumar, J. Power Sources, 146,
    245 (2005).
    44. G.T.K. Fey, C.Z. Lu, J.D. Huang, T.P. Kumar, and Y.C. Chang, J. Power
    Sources, 146, 65 (2005).
    115
    45. K.M. Colbow, J.R. Dahn, and R.R. Haering, J. Power Sources, 26, 397
    (1989).
    46. M. Kamata, T. Esako, N. Kodama, S. Fujine, K. Yoneda, and K. Kanda, J.
    Electrochem. Soc., 143, 1866 (1996).
    47. S. Bach, J.P.P. Ramos, and N. Baffier, J. Power Sources, 81-82, 273
    (1999).
    48. P.P. Prosini, R. Mancini, L. Petrucci, V. Contini, and P. Villano, Solid
    State Ionics, 144, 185 (2001).
    49. C.M. Shen, X.G. Zhang, Y.K. Zhou, and H.L. Li, Mater. Chem. & Phys.,
    78, 437 (2002).
    50. K. Nakahara, R. Nakajima, T. Matsushima, and H. Majima, J. Power
    Sources, 117, 131 (2003).
    51. T. Takada, H. Hayakawa, and E. Akiba, J. Solid State Chem., 115, 420
    (1995).
    52. R. Stoyanova, M. Gorova, and E. Zhecheva, J. Phys. & Chem. of Solids,
    61, 615 (2000).
    53. Y.C. Zhang, H. Wang, B. Wang, H. Yan, A. Ahniyaz, and M. Yoshimura,
    Mater. Res. Bull., 37, 1411 (2002).
    54. Y. Tanaka, Q. Zhang, and F. Saito, Powder Tech., 132, 74 (2003).
    55. B.D. Cullity, “Elements of X-ray Diffraction,” Addison-Wesley Pub. Co,
    MA, (1978).
    56. D. Rahner, S. Machill, and K. Siury, J. Power Sources, 68, 69 (1997).
    57. G.T.K. Fey, Y.Y. Lin, and T. P. Kumar, Surface & Coatings Technology,
    191, 68 (2005).
    58. G.T.K. Fey, P. Muralidharan, and Y.D. Cho, J. Power Sources, In Press.
    116
    59. G.T.K. Fey, P. Muralidharan, C.Z. Lu, and Y.D. Cho, Solid State Ionics,
    177, 877 (2006).
    60. N. Pereira, C. Matthias, K. Bell, F. Badway, I. Plitz, J. Al-Sharab, F.
    Cosandey, P. Shah, N. Isaacs, and G.G. Amatuccia, J. Electrochem. Soc.,
    152, A114 (2005).
    61. G.T.K. Fey, P. Muralidharan, C.Z. Lu, Y.D. Cho, Solid State Ionics, 176,
    2759 (2005).
    62. G.T.K. Fey , P. Muralidharan, C.Z. Lu, Y.D. Cho, Electrochimica Acta, 51,
    4850 (2006).
    63. T. Miyazaki, T. Doi, M. Kato, T. Miyake, and I. Matsuura, Applied
    Surface Science, 121-122, 492 (1997).
    64. J.C. Dupina, D. Gonbeaua, H. Benqlilou-Mouddenb, Ph. Vinatier, A.
    Levasseur, Thin Solid Films, 384, 23 (2001).
    65. D.D. MacNeil and J.R. Dahn, J. Electrochem. Soc., 148, A1205 (2001).
    66. Y. Baba, S. Okada, and J. Yamaki, Solid State Ionics, 148, 311 (2002).
    67. H.S. Kim, T.K. Ko, B.K. Na, W.I. Cho, and B.W. Chao, J. Power Sources,
    138, 232 (2004).
    68. L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, and H.Q. Wu, Solid
    State Sciences, 8, 113 (2006).
    69. E. Plichita, S. Slane, M. Uchiyama, M. Salomon, D. Chua, W.B. Ebner,
    and H.W. Lin, J. Electrochem. Soc., 136, 1865 (1989).
    70. H. Wang, Y.I. Jang, B. Huang, D.R. Sadoway, and Y.M. Chiang, J.
    Electrochem. Soc., 146, 473 (1999).
    71. G.G. Amatucci, J.M. Tarascon, and L.C. Klein, Solid State Ionics, 83, 167
    (1996).
    117
    72. M.D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten,
    Electrochimica Acta, 45, 1781 (2000).
    73. Y.M. Choi, S. Pyun, and S.I. Moon, Solid State Ionics, 89, 43 (1996).
    74. Y.M. Choi, S. Pyun, J.S. Bae, and S.I. Moon, J. Power Sources, 56, 25
    (1995).
    75. B.E. Conway, J. Electrochem. Soc., 138, 1539, (1991).
    76. G.T.K. Fey, J.G. Chen, V. Subramanian, T. Osaka, J. Power Sources, 112,
    384 (2002).
    77. Y.D. Zhong, X.B. Zhao, G.S. Cao, Materials Science and Engineering B,
    121, 248 (2005).

    QR CODE
    :::