| 研究生: |
賴虢樺 Kuo-Hua Lai |
|---|---|
| 論文名稱: |
適用於覆晶封裝、厚度薄型化矽基光電二極體之一維光柵: 設計與分析 Design and Analysis of 1D Gratings for Flip-Chipped, Thickness-Reduced Silicon Photodiode in the Near-Infrared Regime |
| 指導教授: |
張殷榮
Yin-Jung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 覆晶封裝 、一維光柵 、矽基光電二極體 |
| 外文關鍵詞: | Flip-chipped, 1D Grating, Photodiode |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於大多p - i - n 光電二極體大多厚度為150 至200 μm,本論文討論了在晶圓背面以一維光柵結構提升背收光矽基光電二極體之主動層吸收率,此背收光之光柵結構可進一步減薄其晶圓厚度同時實現覆晶(flip-chip) 封裝進而降低產品厚度達45%
This paper demonstrates a backside illuminated photodiode with 45% package thickness reduction and maintains the same level or higher power absorbance in the active area by adding a dielectric grating structure on the backside of the silicon base p - i - n photodiode. Compare the front-illuminated silicon p - i - n photodiode with general thickness in 150 μm to 200 μm. This paper design a dielectric grating on the back side of the silicon photodiode and further reduce the silicon thickness to 75 μm, which is the mature capability for the wafer thinning process. As a back-illuminated photodiode, it can apply to the flip-chipped package structure and further reduce the total package thickness from 0.55 mm to 0.305 mm with 45% thickness reduction.
[1] R. S. Ohl, “Light-Sensitive Electric Device“U.S. Patent 2402662, Jun. 25, 1946.
[2] W.Shockley, “The Theory of P-N Junctions in Semiconductors and P-N Junction Transistors,“ Bell Syst. Tech. J., vol. 28, no. 3, pp. 435-489, Jul. 1949.
[3] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,“ J. Appl. Phys., vol. 32, no. 3, pp. 510–519, Jun. 1961.
[4] K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, ”Absorption Enhancement in Ultrathin Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett., vol. 12, no. 3, pp. 1616-1619, Feb. 2012.
[5] E. Yablonovitch, “Statistical ray optics,“J. Opt. Soc. Am., vol. 72, no. 7, pp. 899-907, Jul. 1982.
[6] C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,“J. Appl. Phys., vol. 89, no. 12, pp. 7722—7726, Jun. 2001.
[7] A Y. Meshalkin, V V Podlipno, A V Ustinov and E A Achimova, “Analysis of diffraction efficiency of phase grating in dependence of duty cycle nad depth,“ J. Phys.:
Conf. Series, vol. 1368, no. 2, 2019.
[8] S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing Periodic Arrays of Metal Nanoparticles for Light-Trapping Applications in Solar Cells,“ Appl.
Phys. Lett., vol. 95, no. 053115, 2009.
[9] H. Xiao, S. C. Lo, Y. H. Tai, J. K. Clark, Y. L. Ho, C. Z. Deng, P. K. Wei and J. J. Delaunay, “Hot electron photodetection with spectral selectivity in the C-band using
a silicone channel-separated gold grating structure,“ Nano Express, vol. 1, no. 1, Jun. 2020.
[10] H. Satoh and H. Inokawa, “Surface Plasmon Antenna with Gold Line and Space Grating for Enhanced Visible Light Detection by a Silicon-on-Insulator Metal–Oxide–
Semiconductor Photodiode,“ IEEE Trans Nanotechnol, vol. 11, no. 2, pp. 346-351, Mar. 2012.
[11] H. S. Lee and S.M. Sze, “Silicon p-i-n photodetector using internal reflection method, “IEEE Trans Electron Devices, vol. 17, no. 4, pp. 342-347, Apr. 1970.
[12] C. S. Lai, “Investigation of Lossy-Film-Induced Optical Effects for Maximum Transmittance into Absorption Layers of Thin-Film Solar Cells,” M.S. thesis, Dept. Optics
and Photonics, National Central Univ., Taoyuan, Taiwan, 2013.
[13] P. Yeh, Optical Waves in Layered Media. New York: Wiley, 2005.
[14] K. D. Moller, “Optics: Learning by Computing with Examples Using MathCAD, Matlab, Mathematica, and Maple.‘ New York: Springer-Verlag, 2007.
[15] Available:https//www.electronics−notes.com.articles/electroniccomponents/diode/photodiode−detector−structures−fabrication.materials.php.
[16] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,“ Appl. Opt., vol. 33, no. 13, pp. 2695-2706, 1970.