跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張家華
Chia-hua Chang
論文名稱: 壽命具廣義伽瑪分配之型II 設限階段應力加速壽命試驗的可靠度分析
The Reliability Analysis of Step-Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions With Type-II Censoring
指導教授: 樊采虹
Tsai-hung Fan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 100
語文別: 中文
論文頁數: 53
中文關鍵詞: 階段加速壽命試驗馬可夫鏈蒙地卡羅方法有母數拔靴法廣義伽瑪分配
外文關鍵詞: Markov chain Monte Carlo, step-stress accelerated life testing, parametric bootstrap method, generalized gamma
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高可靠度產品在製造過程中經由嚴格控管與要求, 故在正常情況下使用, 需要較長時間才能觀測到失效的時間, 對於此類高靠度的產品必須採用加速壽命試驗來加速產品失效以利分析。本文討論當物件壽命為廣義伽瑪分配時, 在型II 設限計劃中, 物件壽命與應力間具對數線性關係下, 物件壽命分配服從累積暴露模型之階段加速壽命試驗。我們以最大概似法求得模型中參數之最大概似估計和以有母數拔靴法估計參數、可靠度和壽命的標準誤, 並且在正常應力條件下, 物件之平均壽命及可靠度函數之統計推論; 並在主觀先驗分配下由馬可夫鏈蒙地卡羅方法得貝氏估計, 同時比較兩種方法在物件之平均壽命及可靠度函數之統計推論。並以傳統的概似比檢定、AIC 和BIC 方法與貝氏選模中常用的貝氏因子法則, 探討資料配適廣義伽瑪分配與韋伯分配的模型選擇問題。模擬結果顯示, 當樣本資訊不足時, 貝氏分析所得結果優於最大概似方法。在模型選擇中若資料來自韋伯分配, 則配適廣義伽瑪分配並未導致太大的錯誤, 但相反地, 若資料具廣義伽瑪分配而配適韋伯分配模型時, 則結果產生很大的誤差。


    High reliability products through strictly controlled in the manufacturing process, so their lifetimes are longer under normal environment. Accelerated life test is often useful to observe enough lifetime information of the products. In this thesis, we discuss the step-stress accelerated life testing for the products whose lifetimes are of generalized gamma distribution in which the mean lifetime of each component is a log-linear function of the levels of the stress variables under Type-II censoring scheme with cumulative exposure model. Maximum likelihood estimates are developed for the model parameters with the aid of parametric bootstrap method to estimate the standard errors of the MLEs. Subjective Bayesian inference incorporated with the Markov chain Monte Carlo method is also addressed. We also discuss model fitting issue regarding the generalized gamma distribution andWeibull distribution via different model selection criteria. Simulation study reveals that when the data follow Weibull
    distribution but are fitted by generalized gamma distribution, the results are acceptable. On the contrary, fitting the data that actually are generalized gamma distributed by the Weibull distribution may result in considerably inaccurate results.

    摘要i Abstract ii 誌謝iii 目錄iv 圖目次vi 表目次vii 第一章緒論1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 研究方法. . . . . . . . . . . . . . . . . . . . . .. . . . . . . 6 第二章物件壽命具廣義伽瑪分配之型II 設限階段應力加速壽命試驗之最大概似 估計8 2.1 模型介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 最大概似推論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 概似比檢定與模型選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 第三章貝氏推論18 3.1 貝氏分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 貝氏模型選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 第四章數值分析與模擬研究23 4.1 壽命具廣義伽瑪分配之階段加速壽命試驗模型. . . . . . . . . . . . 23 4.2 模型選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 一組模擬資料之可靠度分析. . . . . . . . . . . . . . . . . . . . . 35 第五章結論與展望38 附錄A 39 參考文獻41

    [1] Akaike, H. (1974). “A new look at the statistical model identification.” IEEE Transac-
    tions on Automatic Control, 19, 716-723.
    [2] Bai, D.S., Kim, M.S. and Lee, S.H. (1989). “Optimum simple step-stress accelerated life
    tests with censoring.” IEEE Transactions on Reliability, 38, 528-532.
    [3] Balakrishnan, N., Kundu, D., Ng, H.K.T., and Kannan, N. (2007). “Point and interval
    estimation for a simple step-stress model with Type-II censoring.” Journal of Quality
    Technology, 39, 35-47.
    [4] Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis. 2nd Ed.
    Springer, New York.
    [5] Carlin, B.P. and Louis, T.A. (2008). Bayesian Methods in Data Analysis. 3rd Ed., Boca
    Raton, FL: Chapman and Hall/CRC Press.
    [6] Casella, G. and Berger R.L. (2002). Statistical Inference. 2nd Ed., Buxbury, Los Angeles.
    [7] Chaloner, K. and Larntz, K. (1992). “Bayesian design for accelerated life testing.” Jour-
    nal of Statistical Planning and Inference, 33, 245-259.
    [8] Cohen, A.C. (1963). “Progressively censored samples in life testing.” Technome-
    tries, 5, 327-329.
    [9] Cox, C., Chu, H., Schneider, F. and Munoz, A. (2007). “Parametric survival analysis
    and taxonomy of hazard functions for the generalized gamma distribution.” Statistics in
    Medicine, 26, 4352-4374.
    [10] Efron, B. (1979). “Bootstrap method:another look at the jacknife.” Annals of Statis-
    tics, 17, 1-26.
    [11] Fan T.H., Wang W.L. and Balakrishnan, N. (2008). “Exponential progressive step-stress
    life-testing with link function based on Box-Cox transformation.” Journal of Statistical
    Planning and Inference, 138, 2340-2354.
    [12] Fan, T.H., Balakrishnan, N. and Chang, C.C. (2009). “The Bayesian approach for highly
    reliable electro-explosive devices using one-shot device testing.” Journal of Statistical
    Computation and Simulation, 79, 1143-1154.
    [13] Fan, T.H. and Yu, C.H. (2012). “Statistical inference on constant stress accelerated
    life tests under generalized gamma lifetime distribution.” To appear in Quality and
    Reliability Engineering International. .
    [14] Gomes, O., Combes, C. and Dussauchoy, A. (2008). “Parameter estimation of the generalized
    gamma distribution.” Mathematics and Computers in Simulation, 79, 955-963.
    [15] Hager, H.W. and Bain, L.J. (1970). “Inference procedures for the gerneralized gamma
    distribution.” Journal of the American Statistical Association, 65, 1601-1609.
    [16] Hastings, W.K. (1970). “Monte Carlo sampling methods using Markov chains and their
    application.” Biometrika, 57, 97-109.
    [17] Intajag, S. and Sukkasem, N. (2009). “Speckle filtering by generalized gamma distribution.”
    NCM ’09 Proceedings of the 2009 Fifth International Joint Conference on INC,
    IMS and IDC. 1335-1338.
    [18] Kateri, M. and Balakrishnan, N. (2008). “Inference for a Simple Step-Stress Model
    With Type-II Censoring, and Weibull Distributed Lifetimes.” IEEE Transactions on
    Reliability, 57, 616-626.
    [19] Lawless, J.F. (1980). “Inference in the generalized gamma and log-gamma distribution.”
    Technometrics, 22, 409-419.
    [20] Lawless, J.F. (2003). Statistical Models and Methods for Lifetime Data. 2nd Ed. Wiley
    Sons, New York.
    [21] Lee, J. and Pan, R. (2008). “Bayesian inference models for step-stress accelerated life
    testing with type-II censoring.”Proceedings Annual Reliability and Maintainability Sym-
    posium. 91-96.
    [22] Miller, R. and Nelson, W. (1983). “Optimum simple step stress plans for accelerated life
    testing.” IEEE Transactions on Reliability, 32, 59-65.
    [23] Nadarajah, S. and Gupta, A.K. (2007). “A generalized gamma distribution with application
    to drought data.” Mathematics and computers in simulation, 74, 1-7.
    [24] Nelson,W. (1980). “Accelerated life testing - step-stress models and data analysis.” IEEE
    Transactions on Reliability, 29, 103-108.
    [25] Newton, M.A. and Raftery, A.E. (1994). “Approximate Bayesian inference with the
    weighted likelihood bootstrap.” Journal of the Royal Statistical Society, Series B, 56, 3-
    48.
    [26] Noortwijk, V. and Jan, M. (2004). “Bayes estimates of flood quantiles using the
    Generalised Gamma Distribution.” In System and Bayesian Reliability. 5, 351-374,
    Y.Hayakawa, T.Irony and M. Xie (Eds.), World Scientific.
    [27] Ortega, E.M.M., Cancho, V.G. and Paula, G.A. (2009). “Generalized log-gamma regression
    models with cure fraction.” Lifetime Data Analysis, 15, 79-106.
    [28] Pascoa, M.A.R., Ortega, E.M.M., Cordeiro, G.M. and Paranaiba, P.F. (2011). “The Kumaraswamy
    generalized gamma distribution with application in survival analysis.” Sta-
    tistical Methodology, 8, 411-433.
    [29] Robert, C.P. (2001). The Bayesian Choice:From Decision-Theoretic Foundations to Com-
    putational Implementation. Springer, New York.
    [30] Schwarz, G. (1978). “Estimating the dimension of a model.” Annals of Statistics, 6, 461-
    464.
    [31] Stacy, E.W. (1962). “A generalization of the gamma distribution.” Annals of Mathemat-
    ical Statistics, 33, 1187-1192.
    [32] Teng, S.L. and Yeo, K.P. (2002). “A least-squares approach to analyzing lifestress relationship
    instep-stress accelerated life tests.” IEEE Transactions on Reliability, 51, 177-
    182.
    [33] Watkins, A.J. and John, A.M. (2008). “On constant stress accelerated life tests terminated
    by Type II censoring at one of the stress levels.” Journal of Statistical Planning
    and Inference, 138, 768-786.
    [34] Xie, X. and Liu, X. (2009). “Analytical three-moment autoconversion parameterization
    based on generalized gamma distribution.” IEEE Transactions on Reliability, 37, 550-
    555.
    [35] Xiong, C. (1998). “Inferences on a simple step-stress model with Type-II censored exponential
    data.” IEEE Transactions on Reliability, 47, 142-146.
    [36] Zhao, W. and Elsayed, E. (2005). “A general accelerated life model for step-stress testing.”
    IIE Transactions, 37, 1059-1069.
    [37] 陳奕君(2011). ”具廣義伽瑪壽命分佈之系統在隱蔽資料加速壽命試驗下之可靠度分析.” 國立
    中央大學統計研究所碩士論文.
    [38] 蘇岏智(2011). ”串聯系統存在隱蔽資料之可靠度分析以廣義伽瑪分配為例.” 國立中央大學統
    計研究所碩士論文.

    QR CODE
    :::