| 研究生: |
王淵民 Yuan-Min Wang |
|---|---|
| 論文名稱: |
在無線隨意網路中以群組為基礎的多重頻道媒體存取控制協定 A Group-Based Multi-Channel MAC Protocol for Wireless Ad Hoc Networks |
| 指導教授: |
許健平
Jang-Ping Sheu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 30 |
| 中文關鍵詞: | 無線隨意網路 、媒體存取控制協定 、多重頻道 |
| 外文關鍵詞: | wireless ad hoc networks, multi-channel, MAC protocol |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
IEEE 802.11規格在網路的實體層上雖然定義了多個可用頻道,但在其分散協調功能(IEEE 802.11 Distributed Coordinate Function)的媒體存取控制層中,卻只設計了一個單一的共享頻道給網路節點使用。如果我們在媒體存取控制層也採用了多重頻道的話,則可在同一時間內讓數對網路節點同時傳送資料,藉以提高網路效能。在本文中,我們提出一個以群組為基礎的多重頻道媒體存取控制協定,藉由將網路節點分群的方式以達到多頻道傳輸的目的。將網路節點分群的另一個優點在於不只資料封包可以用多重頻道傳輸,控制封包一樣可以同時在數個頻道上傳送。我們的協定簡單、容易實做,適合廣大的無線隨意網路。藉由模擬結果,我們提出的協定跟之前的文獻相比亦有較佳的網路效能。
The IEEE 802.11 standard defines multiple channels available at the physical layer, but the MAC protocol of IEEE 802.11 Distributed Coordinate Function (DCF) is only designed for sharing a single channel between nodes. When we exploit multiple channels in MAC protocol, we can achieve a higher network throughput than using one single channel due to that multiple transmissions can take place simultaneously.
In this thesis, we proposed a novel group-based multi-channel MAC protocol based on grouping nodes which can not only support utilizing multiple channels to transmit data packets but also allow using multiple channels to propagate control packets. Our protocol operates with two transceivers per node and requires time synchronization among all the hosts in order to divide time into a lot of beacon intervals. The protocol we presented is simple and suitable for wireless ad hoc networks with multiple available channels. The simulation results show that our protocol has the superior performances in network throughput to previous work.
[1] Ashish Raniwala and Tzi-cker Chiueh, “Architecture and Algorithms for an IEEE 802.11-Based Multi-Channel Wireless Mesh Network,” in Proc. of IEEE INFOCOM, Vol. 3, pp. 2223 – 2234, Miami, USA, March 2005.
[2] Asimakis Tzamaloukas and J.J. Garcia-Luna-Aceves, “A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Networks,” in Proc. of IEEE INFOCOM, vol.1, pp. 189 – 198, Anchorage, AK, USA, April 2001.
[3] Asimakis Tzamaloukas and J.J. Garcia-Luna-Aceves, “Channel-Hopping Multiple Access,” in Proc. of IEEE International Conference on Communications (ICC), Vol. 1, pp. 415 – 419, New Orleans, LA, USA, June 2000.
[4] Asimakis Tzamaloukas and J.J. Garcia-Luna-Aceeves, “Channel Hopping Multiple Access with Packet Trains for Ad Hoc Networks”, in Proc. of IEEE Mobile Multimedia Communications (MoMuC), Tokyo, Japan, November 2000.
[5] Asis Nasipuri, Jun Zhuang and Samir R. Das, “A Multichannel CSMA MAC Protocol for Multihop Wireless Networks,” in Proc. of IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA , pp. 1402 – 1406, Sept. 1999.
[6] Chih-Yung Chang, Hao-Chun Sun, Chen-Chi Hsieh, “MCDA: An Efficient Multi-Channel MAC Protocol for 802.11 Wireless LAN with Directional Antenna,” in Proc. of the 19th International Conference on Advanced Information Networking and Applications (AINA), Vol. 2 , pp. 64 - 67, Taipei, Taiwan, March 2005.
[7] Giuseppe Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE journal on Selected Areas in Communications, Vol. 18, pp. 535 – 547, March 2000.
[8] Jenhui Chen, Shiann-Tsong and Chin-An Yang, “A New Multichannel Access Protocol for IEEE 802.11 Ad Hoc Wireless LANs”, in Proc. of Personal, Indoor and Mobile Radio Communications (PIMRC), Vol. 3, pp. 2291 – 2296, Beijing, China, September 2003.
[9] Jeonghoon Mo, Hoi-Sheung Wilson So and Jean Walrand, “Comparison of Multi-Channel MAC Protocols,” in Proc. of International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pp. 209 – 218, Montréal, Quebec, Canada , October 2005.
[10] Jing Deng and Zygmunt J. Haas, “Dual Busy Tone Multiple Access (DBTMA): A New Medium Access Control for Packet Radio Networks,” in Proc. of IEEE International Conference on Universal Personal Communications (ICUPC), Florence, Italy, pp. 973 – 977, Oct. 1998.
[11] Jungmin So and Nitin Vaidya, “Multi-Channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using A Single Transceiver,” in Proc. of ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 222 – 233, Roppongi Hills, Tokyo, Japan, May, 2004.
[12] Nitin Jain, Samir R. Das and Asis Nasipuri, “A Multichannel CSMA MAC Protocol with Receiver-Based Channel Selection for Multihop Wireless Networks,” in Proc. of International Conference on Computer Communications and Networks (ICCCN), pp. 432 – 439, Scottsdale, AZ, USA, Oct. 2001.
[13] Paramvir Bahl, Ranveer Chandra and John Dunagan, “SSCH: Slotted Seeded Channel Hopping for Capacity Improvement in IEEE 802.11 Ad-Hoc Wireless Networks”, in Proc. of International Conference on Mobile Computing and Networking (MobiCom), pp. 216 – 230, Philadelphia, PA, USA, September, 2004.
[14] Pradeep Kyasanur and Nitin H. Vaidya, “Routing and Interface Assignment in Multi-Channel Multi-Interface Wireless Networks,” in Proc. of IEEE Wireless Communications and Networking Conference (WCNC), Vol. 4, pp. 2051 – 2056, New Orleans, LA, USA, March 2005.
[15] Shih-Lin Wu, Chih-Yu Lin, Yu-Chee Tseng and Jang-Ping Sheu, “A New Multi-Channel MAC Protocol with On-Demand Channel Assignment for Multi-Hop Mobile Ad Hoc Networks,” in Proc. of the International Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN), pp. 232-237, Dallas, TX, USA, Dec. 2000.
[16] Shih-Lin Wu, Yu-Chee Tseng, Chih-Yu Lin and Jang-Ping Sheu, “A Multi-Channel MAC Protocol with Power Control for Multi-hop Mobile Ad Hoc Networks,” The Computer Journal, Vol. 45, No. 1, pp. 101-110, 2002.
[17] Wing-Chung Hung, K.L.Eddie Law, A. Leon-Garcia, “A Dynamic Multi-Channel MAC for Ad Hoc LAN,” in Proc. of 21st Biennial Symposium on Communications, pp. 31-35, Kingston, Canada, June 2002.
[18] Zhenyu Tang and J.J Garcia-Luna-Aceves, “Hop-Reservation Multiple Access (HRMA) for Ad-Hoc Networks,” in Proc. of IEEE INFOCOM, New York, NY, USA, pp. 194 – 201, March, 1999.
[19] Glomosim
Website, http://pcl.cs.ucla.edu/projects/glomosim/
[20] IEEE 802.11 Working Group, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” 1997.
[21] IEEE 802.11a Working Group, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications – Amendment 1: High-speed Physical Layer in the 5 GHz band,” 1999.