| 研究生: |
伍偉華 Wei-Hua Wu |
|---|---|
| 論文名稱: |
利用脈衝與多電極在酸鹼質子交換膜水電解的效率之分析 The analysis of efficiency on the acido-alkaline proton exchange membrane water electrolysis by using multi-electrode and pulse |
| 指導教授: | 洪勵吾 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 電解水 、質子交換膜 、多電極 、脈衝 、產氫 |
| 外文關鍵詞: | water electrolysis, proton exchange membrane, multi-electrode, pulse, hydrogen production |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗利用多組鎳電極,於氫氧化鉀和硫酸電解液,加入脈衝下進行質子交換膜電解水產氫(PEMWE),由恆電位儀量測相關數據,探討不同電壓值、電極組數、脈衝時間、週期,基礎電位與電流的關係,利用酸和鹼電解液在PEMWE下可以降低電解電壓到0.7V,並且提升產氫的效率;多電極降低整體的電阻阻抗,進而提升能源效率,最後再加入脈衝後,使得瞬間電流值會增加、產生的氫氣迅速脫離電極表面、加速離子的擴散速度,降低電極上的極化現象,進而提升產氫的效率以及節能的效果。
加入脈衝量測後,在電極間距10mm,酸與鹼濃度在30wt%、頻率為100Hz時,在4V的能源效率比未加入脈衝時提升了約15%,而五組電極在2V有著較好的效率,增加達到98.6%的能源效率。
In this experiment, multiple sets of nickel electrodes were used to produce hydrogen by proton exchange membrane water electrolysis (PEMWE) under the action of pulses and potassium hydroxide and sulfuric acid electrolytes. The relevant data were measured by potentiostat, and effects of applied voltage, number of electrode groups,base potential and pulses on the efficiency were investigated. Results show that dual cells and electrolytes can reduce the electrolysis voltage to 0.7V, and improve the efficiency of hydrogen production. Multi-electrode reduces the overall resistance and impedance, thereby improves the energy efficiency. finally as the pulse is added, the instantaneous current value is increased, and the generating hydrogen gas deviates rapidly from the surface of the electrode, accelerates the diffusion speed of the ions, and reduces the polarization phenomenon on the electrode. The efficiency of hydrogen production is thus improved.
As the electrode spacing is 10 mm, the acid and alkali concentration is 30% by weight, and the frequency is 100Hz, The energy efficiency at 4V is about 15% higher than no pulse is used. and five groups of electrodes at 2V have the best efficiency of 98.6%.
[1]D. Lj. Stojić, M. P. Marčeta, S. P. Sovilj and Š. S. Miljanić, “Hydrogen generation from water electrolysis – possibilities of energy saving,” International Journal of Power Sources, Vol. 118, pp. 315-319(2003).
[2]N. Nagai, M. Takeuchi, T. Kimura and T. Oka, ”Existence of optimum space between electrodes on hydrogen production by water electrolysis” International Journal of Hydrogen Energy, Vol. 28, pp. 35-41(2003).
[3]S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umno and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,” International Journal of hydrogen Energy, Vol. 26, pp. 653-659(2001).
[4]R. F. de Souza, J. C. Padilha, R. S. Gonçalves and J. Rault-Berthelot, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications,Vol. 8, pp. 211-216(2006).
[5]M. P. M. Kaninski, D. P. Saponjic, V. M.Nikolic, D. L. Zugic, and G. S. Tasic, “Energy consumption and stability of the Ni-Mo electrodes for the alkaline hydrogen production at industrial conditions,” International Journal of hydrogen energy,Vol. 36, pp. 8864-8868(2011).
[6]V. M. Nikolic, G. S. Tasic, A. D. Maksic , D. P. Saponjic , S. M. Miulovic , and M. P. Marceta Kaninski, “Raising efficiency of hydrogen generation from alkaline water electrolysis - Energy saving,” International Journal of Hydrogen Energy, Vol. 35, pp. 12369-12373, (2010).
[7]S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet and V. N. Fateev, “Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis,” International Journal of Hydrogen Energy, Vol. 34, pp. 5986-5991(2009).
[8]F. Marangio and M. Santarelli, and M. Cali, “Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production,” International Journal of Hydrogen Energy, Vol. 34, pp. 1143-1158.(2009).
[9]S. D. Li, C. C. Wang and C. Y. Chen, “Water electrolysis in the presence of an ultrasonic field,” Electrochimica Acta, Vol. 54, pp. 3877-3883(2009).
[10]H. Matsushima, Y. Fukunaka and K. Kuribayashi, “Water electrolysis under microgravity: Part II. Description of gas bubble evolution phenomena,” Electrochimica Acta, Vol. 51, pp. 4190-4198(2006).
[11]M. Wang, Z. Wang and Z. Guo, “Water electrolysis enhanced by super gravity field for hydrogen production,” International Journal of Hydrogen Energy, Vol. 35, pp. 3198-3205(2010).
[12]T. Iida, H. Matsushima and Y. Fukunaka,“Water Electrolysis under a magnetic Field,” Journal of the Electrochemical Society, Vol. 154, pp. 112-115(2007).
[13]T. Weier, J. Huller, G. Gerbeth and F. Weiss, “Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis” Chemical Engineering Science, Vol 60, pp. 293 – 298(2005).
[14]H. Matsushima, D. Kiuchi and Y. Fukunaka,“Measurement of dissolved hydrogen supersaturation during waterelectrolysis in a magnetic field,” Electrochimica Acta, Vol. 54 , pp. 5858-5862(2009).
[15]H. Matsushima, T. Iida and Y. Fukunaka, “Gas bubble evolution on transparent electrode during water electrolysis in a magnetic field,” Electrochimica Acta, Vol. 100, pp. 261-264(2013).
[16]J. A. Koza, S. Mühlenhoff, P. Żabiński, P. A. Nikrityuk, K. Eckert, M. Uhlemann, A. Gebert, T. Weier, L. Schultz and S. Odenbach, “Hydrogen evolution under the influence of a magnetic field,” Electrochimica Acta, Vol. 56, pp. 2665-2675(2011).
[17]M. Y. Lin, L. W. Hourng and C. W. Kuo, “The effect of magnetic force on hydrogen production efficiency in water electrolysis,” International Journal of Hydrogen Energy, Vol 37, pp. 1311-1320(2011).
[18]M. Y. Lin and L. W. Hourng, “Effects of magnetic field and pulse potential on hydrogen production via water electrolysis,” International Journal of Energy Research, Vol. 38, pp. 106-116(2014).
[19]M. Y. Wang, Z. Wang , X.H. Gong and Z. C. Guo , “The intensification technologies to water electrolysis for hydrogen production – A review,”
Renewable and Sustainable Energy Reviews ,Vol. 29, pp. 573–588(2014).
[20]J. O'M. Bockris1 and E. C. Potter, “The mechanism of the cathodic hydrogen evolution reaction,” The Journal of Chemical Physics , Vol. 20, pp. 614 (1952).
[21]J.Ghoroghchian and J.O'M.Bockris” Use of a homopolar generator in hydrogen production from water,” International Journal of Hydrogen Energy , Vol. 10, No. 2, pp . 101-112(1985).
[22]A. H. Shaaban,” Water electrolysis and pulsed direct current,” Journal of the Electrochemical Society, Vol. 140, issue 10, pp. 2863-2867 (1993).
[23]N. Davidson, Electrolysis apparatus with pulsed, dual voltage, multi-composition electrode assembly, U.S. Patent 7,615,138, Nov. 10, 2009.
[24]N. Davidson, Multi-cell dual voltage electrolysis apparatus and method of using same, U.S. Patent 2008/ 0296169, Dec.4 ,2008。
[25]N. Davidson, Pulsed electrolysis apparatus and publication classification and method of using same, U.S. Patent 2008/0296172,
Dec. 4, 2008。
[26]N. Monk, and S. Watson,” Review of pulsed power for efficient hydrogen production,” International Journal of Hydrogen Energy Vol. 41, Issue 19, pp. 7782-7791 (2016)。
[27]H. Zhang, G. Lin and J. Chen, “Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production,” International Journal of Hydrogen Energy, Vol. 35, pp. 10851-10858(2010).
[28]K. Zeng and D. Zhang, “Recent progress in alkaline water electrolysis for hydrogen production and applications,” Progress in Energy and Combustion Science, Vol. 36, pp. 307-326(2010).
[29]J. Ivy, Summary of electrolytic hydrogen production: milestone completion report, National Renewable Energy Laboratory., Colorado, NREL/MP-560-36734(2004).
[30]A. R. Zeradjanin , A. A. Topalov, S. Cherevko, and G. P. Keeley, “Sustainable generation of hydrogen using chemicals with regional oversupply-Feasibility of the electrolysis in acido-alkaline reactor,” International Journal of Hydrogen Energy, Vol. 39, pp. 16275-16281 (2014).
[31]F. Guttman and O. J. Murphy, Modern Aspects of Electrochemistry. Plenum Press , New York(1983).
[32]魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社(1983)。
[33]J. Koryta, W. Dvorak and L. Kavan, Principles of Electrochemistry Second Edition, John Wiley and Sons, New York(1993).
[34]田福助,電化學基本原理與應用,五洲出版社 (2004)。
[35]O. Darrigol, Electrodynamics from Ampère to Einstein, Oxford, [England]: Oxford University, p.327 (2000).
[36]張啟陽,電磁學,東華書局(1999)。
[37]H. D. Young, University Physics, 8th Ed., Addison-Wesley,(1992).
[38]J. M. Gras and P. Spiteri, “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis,” International Journal of Hydrogen Energy, Vol. 18, pp. 561-566 (1993).
[39]田中正三郎著、賴耿陽譯著,應用電化學,應用新科技-應用電化學,復漢出版社(1998)。
[40]P. Marčeta and D. L. Stojić, “Comparison of different electrode materials–energy requirements in the electrolytic hydrogen evolution process,” Journal of Power Sources, Vol. 157, pp. 758-764(2006).
[41]許嘉顯, 磁場對多電極電解水產氫之影響,中央大學能源工研究所碩士學位論文,pp 1-85 (2015).
[42]陳彥廷, “雙電解槽電解水產氫於多電極組樹下之效能研究,中央大學能源工研究所碩士學位論文,pp 1-67 (2016).