跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林晟
Cheng Lin
論文名稱: 多波長光強度傳播方程之相位成像
Transport of intensity equation from different wavelengths for quantitative phase imaging
指導教授: 李正中
Cheng-Chung Lee
駱遠
Yuan Luo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 90
中文關鍵詞: 相位成像強度傳播方程
外文關鍵詞: phase image, Transport of intensity equati
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前,顯微影像的技術,已經能夠呈現一般顯微鏡無法達到的高對比度影像效果。事實上,早在1953年時, 由諾貝爾獎得主Zernike所發明的相位差(phase contrast)顯微鏡,便成功的征服這個問題。但是,無法定量卻是最大罩門。近年來,有許多論文所討論的強度傳輸方程(Transport of intensity equation, TIE)相位成像,就是一種非干涉式、量測容易,而且有即時量測可能性的定量相位成像技術。本文將在這些研究的基礎上,達成比一般TIE定量更準確,且有及時相位成像可行性的多波長光強度傳播方程。當然,在研究過程中,除了藉由模擬不同的雜訊影響程度,分析得到最佳離焦距離。又在雙色TIE的部分,設計方程式推導定量計算並驗證。更進一步,在現有的技術上,推導出同時具有雙色TIE,與高階TIE優勢的多波長TIE 。最後在實驗上,我們達成傳統TIE、高階TIE與彩色TIE 的定量相位重建。


    Microscopy can be utilized to observe biological samples, but conventional wide-field microscopy cannot obtain phase information. Phase contrast microscopy has been invented by Zenike at 1953 to improve the contrast of samples. Although a phase contrast microscope can significantly enhance the contrast of fine features, in general it cannot obtain the quantitative information from a biological objects. Transport of intensity equation (TIE) is a unique technique for phase imaging. Unlike phase contrast microscopy, it acquires quantitative phase information of samples. Here, we apply TIE with multiple wavelengths to reconstruct quantitative phase imaging. In our measurements TIE imaging with multiple wavelengths can retrieve quantitative phase information of fine features of sample in a fast fashion without scanning and has better quality than traditional TIE , also has real time possibility.

    多波長光強度傳播方程之相位成像 1 Transport of intensity equation from different wavelengths for quantitative phase imaging 1 摘要 i Abstract ii 致謝 iii 1. 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 4 2. 第二章 基礎原理 10 2-1 傳統TIE理論推導 10 2-2 高階TIE(High Order TIE)理論推導 16 2-3 彩色TIE(Color TIE)理論推導 21 2-4 多波長TIE(Multi-Color TIE)理論與推導 29 3. 第三章 模擬數據 31 3-1 傳統TIE模擬 31 3-2 高階TIE模擬 34 3-3 彩色TIE模擬 38 3-4 多波長TIE模擬 43 4. 第四章 實驗架構 49 4-1 實驗架構 49 4-2 High Order TIE實驗結果 53 4-3 High Order Color TIE 實驗進展 55 5. 第五章 實驗改進與探討 60 5-1 增加入射光準直 60 5-2 自干涉影響 61 5-3 離焦影像優化 63 5-4增加吸收樣品相容性 64 5-5 High Order TIE實驗改進結果 65 第六章 結論與未來工作 73 文獻參考 75

    [1] A. Köhler, W. Loos (1941). "Das Phasenkontrastverfahren und seine Anwendungen in der Mikroskopie". Naturwissenschaften, 29 (4): 49–61.
    [2] P. Hariharan (2007). Basics of Interferometry. Elsevier Inc.
    [3] D. Murphy, Differential interference contrast (DIC) microscopy and modulation contrast microscopy, in Fundamentals of Light Microscopy and Digital Imaging, Wiley-Liss, New York, pp. 153–168 (2001).
    [4] J. B. Pawley (editor) (2006). Handbook of Biological Confocal Microscopy (3rd ed.). Berlin: Springer.
    [5] K. R. Spring, M.W. Davidson, "Introduction to Fluorescence Microscopy". Nikon MicroscopyU. Retrieved 2008-09-28.
    [6] W. Denk, J. Strickler, W. Webb (1990). "Two-photon laser scanning fluorescence microscopy". Science 248 (4951): 73–6.
    [7] F. Chasles, B. Dubertret, and A. C. Boccara, Optimization and characterization of a structured illumination microscope. Optics Express, 2007. 15(24): p. 16130-16140.
    [8] M. Teague, "Deterministic phase retrieval: a Green's function solution," Journal of the Optical Society of America, 73, no. 11, pp. 1434-1441, 1983.
    [9] N. Streibl, "Phase imaging by the transport equation of intensity," Optical Communications, 49, no. 1, 1984
    [10] M. Teague et al., "Image formation in terms of the transport equation," Journal of the Optical Society of America A, 2, no. 11, pp. 2019-2026, 1985.
    [11] L. Waller, L. Tian, and G. Barbastathis “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives” Optics Express, 18, Issue 12, pp. 12552-12561 (2010).
    [12] H.J. Micah, M.L. Joshua, and K.G. Thomas"Multifilter phase imaging with partially coherent light"1 June 2014 / 53, No. 16 / Applied Optics
    [13] W. Cong, G. Wang" Higher-order phase shift reconstruction approach" 37(10), October 2010
    [14] C. P. Jonathan, L. Tian, G. Barbastathis"The transport of intensity equation for optical path length recovery using partially coherent illumination" Optics Express, 21, Issue 12, pp. 14430-14441 (2013)
    [15] N.Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10(1984).
    [16] E.Barone-Nugent, A.Barty, and K.Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206(3), 194–203 (2002).
    [17] B. Xue,S. Zheng, L. Cui, X. Bai and F. Zhou “Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes” 10 October 2011 / 19, No. 21 / Optics Express.
    [18] L. Waller, Shan Shan Kou, C. J. R.Sheppard, and G. Barbastathis “Phase from chromatic aberrations,” Optics Express, 18 Issue 22, pp.22817-22825 (2010).
    [19] P. Mouroulis and J. Macdonald, Geometrical Optics and Optical Design (Oxford U. Press, New York, 1997).
    [20] D. Drapcho and K. V. Donck, "Label-free live-cell imaging for high-content screening," Photonics.com, November, 2009.
    [21] http://micro.magnet.fsu.edu/primer/lightandcolor/lensesintro.html
    [22] F. Zernike, "How I discovered phase contrast," Science, 121, no. 3141, 1955
    [23] F. Zernike, "Phase contrast, a new method for the microscopic observation of transparent objects," Physica, 9, 1942
    [24] http://bwoptics.com/newsend2.asp?id=3
    [25] H. Bruning, D. Herriott, J. Gallagher, D. Rosenfeld, A. White, and D. Brangaccio, "Digital wavefront measuring interferometer for testing optical surfaces and lenses," Applied Optics, 13, no. 11, 1974.
    [26] D. Murphy, Differential interference contrast (DIC) microscopy and modulation contrast microscopy. New York: Wiley-Liss, 2000.
    [27]http://www.olympusmicro.com/primer/techniques/fluorescence/fluorodic.html
    [28]E. Wolf, "Three-dimensional structure determination of semi-transparent objects from holographic data," Optics Communications, 1, no. 4, pp. 153 -156, 1969.
    [29] X. Sang , C. Yu , M. Yu , D. Hsu” Applications of digital holography to measurements and optical characterization” Optical Engineering, 50, 091311 (September 2011)
    [30] A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Optics Letters, 23 Issue 11, pp.817-819 (1998)
    [31] M. Beleggia, M. Schofield, V. Volkov, and Y. Zhu, "On the transport of intensity technique for phase retrieval," Ultramicroscopy, 102, 2002.
    [32] L. Waller, “Computational phase imaging based on intensity transport”, M.I.T. , Ph.D., (2010 June)
    [33] A. Barty, K. Nugent, D. Paganin, and A. Roberts, "Quantitative optical phase microscopy," Optics Letters, 23, no. 11, pp. 817-819, 1998.
    [34] https://en.wikipedia.org/wiki/Bayer_filter
    [35] Geometrical Optics and Optical design, Mouroulis
    [36]https://www.thorlabs.com/thorcat/16500/MLA150-5C-SpecSheet.pdf
    [37] https://www.microscopyu.com/articles/formulas/formulasna.html

    QR CODE
    :::