| 研究生: |
王恩信 En-hsin Wang |
|---|---|
| 論文名稱: | Recommendation Based Cache Proxy for Web Browsers |
| 指導教授: |
孫敏德
Min-te Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 網頁預取 、推薦系統 、網頁快取 |
| 外文關鍵詞: | web prefetch, recommendation system, web cache |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球資訊網是網際網路中最為廣泛使用於傳播、獲取訊息的服務。不幸的是,用戶經常會因網路擁塞造成長時間的訪問延遲。網頁緩存預取是一種常見用於降低用戶回應時間的方法。在本文中,我們建立了基於推薦系統的快取代理伺服器(recommendation based cache proxy for web browsers),利用推薦系統預測將會被下載的網頁。此系統將被預測網頁的統一資源定位位址和網頁元件預取至快取中,減少使用者瀏覽網頁的網頁讀取時間。利用真實的數據集,我們比較了項目為基準的協同過濾、基於流行推薦、隨機推薦,並證明了使用以項目為基準的協同過濾可令系統達到最佳的效能。另外和靜態的快取策略,先進先出演算法、最久未使用演算法等做比較。
The World Wide Web is the most widely used application for information access and dissemination on the Internet. Unfortunately, users often experience long access latency due to network congestion. Web caching prefetching is a common approach used to reduce the response time perceived by users. In this study, we build a recommendation based cache proxy for web browsers, which use the recommendation system to predict web pages to be downloaded. The system then prefetches the URLs and objects into the cache to reduce the web load time when the client visits the web pages. Using true datasets, we show that the recommendation based cache proxy using IBCF achieves the best performance in a variety of metrics compared with the system based on POPULAR and RANDOM as well as the static cache strategies, such as FIFO and LRU.
References
[1] \Digital agenda scoreboard http://ec.europa.eu/digital-agenda/en/digital-agenda-
scoreboard."
[2] \S. lohr. for impatient web users, an eye blink is just too long to
wait. http://www.nytimes.com/2012/03/01/technology/ impatient-web-users-
ee-
slow-loading-sites. html, mar. 2012."
[3] J. A. G. Johann Marquez, Josep Dom`enech and A. Pont, \A web caching and
prefetching simulator," 2013.
[4] A. Nair and J. Jayasudha, \Dynamic web pre-fetching technique for latency reduc-
tion," in Conference on Computational Intelligence and Multimedia Applications,
2007. International Conference on, vol. 4, Dec 2007, pp. 202{206.
[5] B. Wu and A. Kshemkalyani, \Objective-greedy algorithms for long-term web
prefetching," in Network Computing and Applications, 2004. (NCA 2004). Proceed-
ings. Third IEEE International Symposium on, Aug 2004, pp. 61{68.
[6] S. Ihm and V. S. Pai, \Towards understanding modern web trac," in Proceedings
of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, ser.
IMC '11. New York, NY, USA: ACM, 2011, pp. 295{312. [Online]. Available:
http://doi.acm.org/10.1145/2068816.2068845
[7] \Mozilla link prefetching." [Online]. Available: https://developer.mozilla.org/zh-
TW/
[8] \Dns prefetching (or pre-resolving).http://blog.chromium.org/2008/09/."
[9] E. Cohen and H. Kaplan, \Prefetching the means for document transfer: a new ap-
proach for reducing web latency," in INFOCOM 2000. Nineteenth Annual Joint Con-
ference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 2, 2000, pp. 854{863 vol.2.
[10] G. Adomavicius and A. Tuzhilin, \Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions," IEEE Transactions
on Knowledge and Data Engineering, vol. 17, no. 6, pp. 734{749, 2005.
[11] M. Balabanovic and Y. Shoham, \Fab: Content-based, collaborative recommenda-
tion," Commun. ACM, vol. 40, no. 3, pp. 66{72, Mar. 1997. [Online]. Available:
http://doi.acm.org/10.1145/245108.245124
[12] V. N. Padmanabhan and J. C. Mogul, \Using predictive prefetching to improve
world wide web latency," SIGCOMM Comput. Commun. Rev., vol. 26, no. 3, pp.
22{36, Jul. 1996. [Online]. Available: http://doi.acm.org/10.1145/235160.235164
[13] J. Domenech, J. Gil, J. Sahuquillo, and A. Pont, \Ddg: An ecient prefetching algo-
rithm for current web generation," in Hot Topics in Web Systems and Technologies,
2006. HOTWEB '06. 1st IEEE Workshop on, Nov 2006, pp. 1{12.
[14] \recommenderlab source http://cran.r-project.org/web/packages/recommenderlab/index.html."
[15] \Stanford network analysis project.http://snap.stanford.edu/."
[16] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, \Item-based collaborative ltering
recommendation algorithms," in Proceedings of the 10th International Conference on World Wide Web, ser. WWW '01. New York, NY, USA: ACM, 2001, pp.285{295. [Online]. Available: http://doi.acm.org/10.1145/371920.372071