| 研究生: |
李政鴻 Zheng-hong Li |
|---|---|
| 論文名稱: |
不同丙烯酸酯純化後對水泥系材料性質之影響 In study on different acrylate through the use of H2O2 purification and results of cementitious materials |
| 指導教授: |
李釗
Chau Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 丙烯酸酯 、純化 、酯化反應 |
| 外文關鍵詞: | Purify, Acrylate, Etherification reaction |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以不同醇類與丙烯酸進行酯化反應後所得之丙烯酸酯聚合物,透過使用過氧化氫純化處理,將丙烯酸酯中影響混凝土耐久性之醇類移除,探討純化後之丙烯酸酯聚合物對水泥系材料性質之影響。將純化後之丙烯酸酯分別加入水泥漿、水泥砂漿和混凝土進行基本物理試驗,評估純化後之丙烯酸酯聚合物對水泥系材料之影響。綜合評估試驗結果,丙烯酸酯聚合物經雙氧水純化處理後,在適當的配比下,對水泥材料力學性質和耐久性有適度之改質成效,其中丙烯酸和二乙二醇莫爾比為1 : 0.29,反應生成之丙烯酸二乙二酯聚合物在最佳酯化率下,添加1.0 %雙氧水純化處理後,其改質成效最為顯著。在水泥及材料新拌性質方面,純化後之丙烯酸酯隨著添加量增加,水泥系材料流動性會隨之增加;水泥漿凝結時間亦隨著雙氧水用量增加,有縮短初、終凝的現象;在硬固水泥砂漿性質方面,固定聚合物添加0.1 %時,具有最佳之成效,其抗壓強度較控制組可提高15.06~22.87 %,且抗彎和黏結強度亦較控制組優良;添加純化後之丙烯酸酯對於水泥砂漿乾縮量無明顯收縮現象。混凝土基本性質試驗結果顯示,添加純化後之丙烯酸二乙二酯,其28天抗壓強度較控制組可提高14.1 %,純化後之丙烯酸酯可延長混凝土受高溫環境下,試體強度提早折減之影響。
In this study, the removal of redundant alcohol of acrylate that affects concrete durability are carried out in different alcohols and acrylic acid derived from the etherification reaction of acrylic ester polymer through the use of H2O2 purification. Discussion on the impact of purified acrylic polymer to cement materials is also done. After purification by adding acrylic, basic physical property test are carried out on the cement, cement mortar, and concrete.
Comprehensive evaluation of the test results indicates that for acrylate polymer treated with H2O2 purification, the most significant modification to the concrete materials properties and durability was achieved when the Moore ratio of acrylic acid and diethyl glycol is 1:0.29; the reaction of acrylic acid and diethyl ester polymer yielded the best possible result with the addition of 1.0 % H2O2 purification treatment.
In the fresh cement mortar, the addition of purified acrylate addition to cement materials will cause an increase in mobility workability; slurry setting time will also increase with the amount of H2O2 due to the shortening of the beginning of the end of condensate phenomenon. In the hardened cement mortar with 1 % polymer addition, the compressive strength increased 15.06-22.87 % compared to the control group, the flexural bond strength is also better than the control group. The addition of purified acrylic cement mortar also prevented the occurrence of dry shrinkage. Result of testing on the basic properties of concrete shows that the addition of purified diethyl’s esters of acrylic acid increased the 28 days compressive strength by 14.1 % compared to the control group. When purified acrylic uses are extended to the higher temperature environment of concrete, the early strength of the concrete are reduced.
1. John, P., “Corrosion of Steel in Concrete,” Cement and Concrete Research Vol. 20, NO. 2, pp. 189-212 (1984)
2. Malhotra, V. M., Ramachandran, V. S., and Feldman, R. F., “Aitkin condensed Silica Fume in concrete,” CRC Press. Florida. pp. 221, 1987。
3. J. M. L. Reis, A. J. M. Ferreira, “Fracture behavior of glass fiber reinforced polymer concrete,” polymer testing (2002).
4. 徐武軍,「高分子材料導論」,台北五南圖書出股公司2004。
5. Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z., “A note on the comparison of crack resistance of Ca(OH)2 crystals of unmodified and polymer-modified mortars in carbonated atmosphere,” Cement and Concrete Research, Vol. 31, No. 11, pp.1643-1645 (2001).
6. Al-Zahrani, M. M., Maslehuddin, M., Al-Dulaijan, S. U., and Ibrahim, M., “Mechanical properties and durability characteristics of polymer and cement-based repair materials,” Cement and Concrete Composites, Vol. 25, No. 4, pp. 527-537 (2003).
7. Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z., “Hydrogarent-type cubic crystals in polymer-modified mortars,” Cement and Concrete Research, Vol. 27, No.12, pp. 1787-1789 (1997).
8. Chandra, S., and Flodin, P., “Interactions of polymers and organic admixtures on Portland cement hydration,” Cement and Concrete Research, Vol. 17, No. 6, pp. 875-890 (1987).
9. Ohama, Y., “Recent progress in concrete-polymer composites,” Advn Cem Bas Mat., Vol. 5, pp. 31-40 (1997).
10. Fowler, D.W., “Polymer in concrete: a vision for the 21st century,” Cement and Concrete Composites, Vol. 21, No. 5, pp. 449-452 (1999).
11. Ohama, Y., “Polymer-based admixtures,” Cement and Concrete Composites,Vol. 20, NO. 2, pp. 189-212 (1998).
12. Mindess, S., Young, J. F., and Darwin, D., Concrete. 2nd ed., Prentice-Hall, Inc., Upper Saddle River, New Jersey, pp. 583-598 (2002).
13. Schulze, J., and Killermann, O., “Long-term performance of redispersible powders in mortars,” Cement and Concrete Research, Vol. 31, No. 3, pp. 357-362 (2001).
14. The Dow Chemical Company, http://www.dow.com/
15. Fowler, D. W., Huang, Y., Wu, K. and Chen, Z., “In polymer in concrete,” Proceedings of the 6th International Congress on Polymers in Concrete, International Academic Publishers, Beijing, pp.10-17 (1990).
16. Sakai, E., and Sugita, J., “Composite mechanism of polymer modified cement,” Cement and Concrete Research, Vol. 25, No. 1, pp. 127-135 (1995).
17. Fu, X., and Chung, D. L., “Submicron carbon filament cement-matrix composites for electromagnetic interference shielding,” Cement and Concrete Research, Vol. 26, No. 10, pp. 1467-1472 (1996).
18. Fiche, R. O., Gauthier, C., Clamen, G., and Boch, P., “Microstructure aspects in a polymer-modified cement,” Cement and Concrete Research, Vol. 28, No. 12, pp. 1687-1693 (1998).
19. Rah, C. Y., Kim, C. E., Lee, C. S., Kim, K. I., and Lee, S. K., “Preparation and characterization of absorbent polymer-cement composites,” Cement and Concrete Research, Vol. 29, No. 2, pp. 231-236 (1999).
20. Silva, D. A., and Montero, P. J. M., “The influence of polymers on the hydration of Portland cement phases analyzed by soft X-ray transmission microscopy,” Cement and Concrete Research, Vol. 36, No. 8, pp. 1501-1507 (2006).
21. Silva, D. A., John, V. M., Ribeiro, J. L. D., and Roman, H. R., “Pore size distribution of hydrated cement pastes modified with polymers,” Cement and Concrete Research, Vol. 31, No. 8, pp. 1177-1184 (2001).
22. Kim, J. H., and Robertson, R. E., “Prevention of air void formation in polymer-modified cement mortar by pre-wetting,” Cement and Concrete Research, Vol. 27, No. 2, pp. 171-176 (1997).
23. Jenni, A., Holzer, L., Zurbriggen, R., and Herwegh, M., “Influence of polymers on microstructure and adhesive strength of cementations tile adhesive mortars,” Cement and Concrete Research, Vol. 35, No. 1, pp. 35-50 (2005).
24. Beeldens, A., Monteny, K., Vincke, E., Belie, N. D., Gemert, D. V., Taerwe, L., and Verstraete, W., “Resistance to biogenic sculpture acid corrosion of polymer-modified mortars,” Cement and Concrete Composites, Vol. 23, No. 1, pp. 47-56 (2001).
25. Martinez-Ramirez, S., Zamarad, A., Thompson, G. E., and Moore, B., “Organic and inorganic concrete under SO2 pollutant exposure,” Cement and Concrete Research, Vol. 37, No. 10, pp. 933-937 (2002).
26. Vincke, E., Wanseele, E. V., Monteny, J., Beeldens, A., Belie, N. D., Taerwe, L., Gemert, D. V., and Verstraete, W., “Influence of polymer addition on biogenic sulfuric acid attack of concrete,” International Biodeterioration & Biodegradation, Vol. 49, pp. 283 - 292 (2002).
27. Monteny, J., Belie, N., Vincke, E., Verstraete, W., and Taerwe, L., “Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete,” Cement and Concrete Research, Vol. 31, No. 9, pp. 1359-1365 (2001).
28. 謝孟勳,「不同醇類製成之丙烯酸酯對水泥基材的改質成效研究」,國立中央大學研究所碩士論文(2008)。
29. Walters, D. G., “Comparison of latex-modified Portland cement mortars,” ACI Materials Journal, Vol. 87, No. 4, pp. 371-377 (1990).
30. Gao, J. M., Qian, C. X., Wang, B., and Morino, K., “Experimental Study on Properties of Polymer-Modified Cement Mortars with Silica Fume,” Cement and Concrete Research, Vol. 32, No. 1, pp. 41-45 (2002).
31. 林世堂,「水溶性樹脂對水泥基複合材料的早期收縮開裂敏感性能的巨、微觀探討」,國立海洋大學材料工程研究所博士資格考審查資料 (2007)。
32. Kantro, D. L., “Influence of water-Reducing admixtures on properties of cement paste - a miniature slump test,” Cement Concrete and Aggregates, Vol. 2, No. 2, pp. 95-108 (1980).
33. 郭文田,「添加強塑劑對水泥材料水化及其早期行為之影響」,國立中央大學研究所博士論文(2000)。
34. Hall, C., “Water Captivity of Mortars and Concretes: A Reviews,” Magazine of Concrete Research, Vol. 41, No. 147, pp. 51-56 (1989).
35. Silva, D.A., Roman, H.R. and Gleize, P.J.P., “Evidences of chemical interaction between EVA and hydrating Portland cement,” Cement Concrete and Research (2002).
36. Afridi, M.U.K., Ohama, Y., Zafar. M., and Demura, K., “Water retention and adhesion of powdered and aqueous polymer-modified mortar,” Cement and Concrete Composites (1995).