| 研究生: |
吳明晏 Ming-Yen Wu |
|---|---|
| 論文名稱: |
利用ECR-CVD成長氫化氧化矽薄膜之研製與應用 The study and application of SiO:H thin-film by ECR-CVD |
| 指導教授: |
張正陽
Jenq -Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | ECR-CVD 、氫化氧化矽薄膜 |
| 外文關鍵詞: | SIO, ECR |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以電子迴旋氣相沉積法(ECR-CVD)來討論氫化氧化矽(SiOX:H)薄膜的特性與在矽晶異質介面太陽電池上的應用。ECR-CVD 屬於高電漿密度的薄膜沉積製程設備,主要是以磁場內的電子迴轉角頻率和入射微波頻率相同產生共振時的能量吸收轉化來使製程氣體解離產生高密度電漿。ECR-CVD相較於傳統的PE-EVD有沉積速率較快速、低離子轟擊、無電極汙染、較高的氣體使用率…等優勢。
此研究將分析利用ECR-CVD所致製備之SiOX:H薄膜的光學能隙、可見光之穿透率、薄膜之氧含量、光敏感度…等性質,並詳細敘述氫化氧化矽薄膜中氧含量將如何影響其光電特性。最後再將SiOX:H薄膜研究結果應用在HJ太陽電池上,並針對氫氣和B2H6兩項參數做優化,得到其太陽電池的轉換效率(η)=8.19%;開路電壓(Voc) =530.5mV;短路電流(Jsc)=25.87;填充因子( FF)=59.68%
The study in this paper is to research the characteristics of hydrogen silicon oxygen(SiOX:H) fabricated by electron cyclotron resonance chemical vapor deposition (ECR-CVD) and its application on heterojunction solar cells(HJ solar cells). ECR-CVD is belong to a high density plasma deposition equipment, the high density plasma is generated by the source gas absorb the energy form the resonance when angular frequency and microwave was in the same frequency. Compare with PE-CVD , the advantage of ECR-CVD such like high plasma density, low ion temperature, the faster deposition rate, low ion bombardment, low operating pressure.
Furthermore , the study will discuss the energy band gap, transmittance, Oxygen-content, and photo sensitivity of the SiOX:H. Finally, we will use the result of the research of SiOX:H thin-film on the HJ solar cells, and there we have the Electro-optic convert efficiency 8.19%, the open-circuit voltage (VOC) = 0.530 V, short-circuit current density (JSC) = 0.026 A/cm2,and the fill factor (FF) = 59.68%.
[1] H.R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon”, J. Phys. Chem. Solids 32 (1972) 1935.
[2] R.J. Temkin, “An analysis of the radial distribution function of SIOX ”, J. Non-Cryst. Solids 17 (1975) 215.
[3] Koichi Haga and Hideo Watanabe, “Optical Properties of Plasma-Deposited Silicon-Oxygen Alloy Films”, Japanese Journal of Applied Physics 29 (1990) 636.
[4] Chi-Huei Lin, Si-chen lee, Yang-Fang Chen, “Strong room-temperature photoluminescence of hydrogenated amorphous silicon oxide and its correlation to porous silicon”, Appl. Phys. Lett. 63, 902 (1993)
[5] K. Haga, H. Watanabe, “A structural interpretation of Si-O-Si vibrational absorption of high-photoconductive amorphous a-SiOX:H films”, Journal of Non-Crystalline Solids 195 (1996) 72.
[6] A. Bacıog˘ lu, A.O. Kodolbas-, O‥ . O‥ ktu, “Deposition of highly photoconductive wide band gap a-SiOX:H thin films at a high temperature without H2-dilution”, Solar Energy Materials & Solar Cells 89 (2005) 49–59
[7] Koichi Haga, Kenji Yamamoto, Masafumi Kumano and Hideo Watanabe, “Wide Optical-Gap a-Si:O:H Films Prepared from SiH4–CO2 Gas Mixture”, Japanese Journal of Applied Physics 25 (1986) L39.
[8] Park Young-Bae, Rhee Shi-Woo, “Effect of hydrogen plasma precleaning on the removal of interfacial amorphous layer in the chemical vapor deposition of microcrystalline silicon films on silicon oxide surface” Thin Solid Films 280 (1996) 43.
[9] Debajyoti, Das; S.M, Iftiquar; A.K, Barua, “Wide optical-gap a-SiO:H films prepared by rf glow discharge” J. Non-Cryst. Solids 210 (1997) 148.
[10] Debajyoti, Das; A.K, Barua, “Characterization of undoped μc-SiO:H films prepared from (SiH4+CO2+H2)-plasma in RF glow discharge”, Sol. Energy Mater. Sol. Cells 60 (2000) 167.
[11] S.M. Iftiquar, “The roles of deposition pressure and rf power in opto-electronic properties of a-SiO:H films” J. Phys. D: Appl. Phys. 31 (1998) 1630.
[12] Arup Samanta and Debajyoti Das, “Optical, electrical and structural properties of SiO :H films prepared from He dilution to the SiH4 plasma” 2009 J. Phys. D: Appl. Phys. 42 215404
[13] Guizot J L, Nomoto K and Matsuda A, “Guizot J L, Nomoto K and Matsuda”1991 Surf. Sci. 244
[14] J. Schwan, S. Ulrich V. Batori, H. Ehrhardt and S.R.P. Sliva, “Raman spectroscopy on amorphous carbon films” J. Appl. Phys.,80(1996) 440
[15] Tauc, J., in: Optical properties of Solids, ed. by F. Abeles (North-Holland, Amsterdam, 1972) P.277 (1972)
[16] Takashi Noma, Kwang Soo Seol, Makoto Fujimaki, Yoshimichi Ohki, “Origin of photoluminescence around 2.6–2.9 eV in silicon oxy-nitride” Appl. Phys. Lett. 79, 1995 (2001)
[17] Akihisa Matsuda, “Microcrystalline silicon.: Growth and device application” Journal of Non-Crystalline Solids, Vol. 338, pp. 338-340 (2004)
[18] Sorapong Inthisang, Kobsak Sriprapha, Shinsuke Miyajima, Akira Yamada, and Makoto Konagai, “Hydrogenated Amorphous Silicon Oxide Solar Cells Fabricated near the Phase Transition between Amorphous and Microcrystalline Structures” Japanese Journal of Applied Physics 48 (2009) 122402
[19] Hiroyuki Fujiwara , Tetsuya Kaneko, Michio Kondo, “Optimization of interface structures in crystalline silicon heterojunction solar cells”, Solar Energy Materials & Solar Cells 93 (2009) 725–728
[20] Hiroyuki Fujiwara, Hitoshi Sai, and Michio Kondo, “Crystalline Si Heterojunction Solar Cells with the Double Heterostructure of Hydrogenated Amorphous Silicon Oxide”, Japanese Journal of Applied Physics 48 (2009) 064506
[21] Jaran SRITHARATHIKHUN, Chandan BANERJEE, Michio OTSUBO, Tsutomu SUGIURA, Hiroshi YAMAMOTO, Takehiko SATO, Amornrat LIMMANEE, Akira YAMADA, Makoto KONAGAI, “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics Vol. 46, No. 6A, 2007, pp. 3296–3300