跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭琍棻
Li-fen Kuo
論文名稱: GPS時間序列的雜訊分析-美國東盆嶺及黃石蛇河平原觀測網
Noise analysis of GPS time series-EBAR and YSRP networks, U.S.
指導教授: 張午龍
Wu-lung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 100
語文別: 中文
論文頁數: 98
中文關鍵詞: 雜訊分析全球衛星定位系統
外文關鍵詞: GPS, noise
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多數時間序列及隨機過程的研究中,僅將誤差視為與時間無關的白雜訊(white noise),這是因為白雜訊的數值模型及計算較為容易。但根據前人研究指出,若不考慮與時間相關的色雜訊(color noise)的存在將會低估時間序列觀測值的誤差。在本研究中,我利用白雜訊及色雜訊的數學模型來嘗試分析及計算各GPS時間序列中的雜訊振幅值,並希望以此為基礎估計合理的地殼形變速度誤差。
    本研究所使用的GPS觀測資料來自於美國的EBAR(54站)及YSRP(60站)觀測網,使用兩種方法來進行資料的雜訊分析,分別是時間域上的最大概似估計法以及頻率域上的頻譜分析法。假設每筆GPS時間序列中僅含有兩種雜訊,對應兩個雜訊模型:一是白雜訊加閃爍雜訊模型,二是白雜訊加隨機走動雜訊模型。以此兩模型為基礎計算出各別雜訊的振幅並找出最適合本研究區域內GPS時間序列的雜訊模型。結果指出兩個觀測網中白雜訊加閃爍雜訊均為較好的雜訊模型,而其中都閃爍雜訊雜訊的振幅值都高於0.5 mm/yr^0.25。兩區域中PBO測站的閃爍雜訊振幅值都比非PBO測站低,可能是由於PBO的測站儀器設計較新,相對之下較不容易產生閃爍雜訊,且PBO測站的時間序列較短,較不容易偵測到色雜訊的存在。除此之外,YSRP觀測網的閃爍雜訊振幅平均值比EBAR觀測網來的大,可能是由於YSRP區域的氣候變化較大且緯度較高,因此與EBAR區域相比較,GPS觀測易受到模擬不完整的殘餘大氣對流層效應或電離層效應影響而有較高的閃爍雜訊振幅。另外根據速度誤差的比例參數分析,指出在計算地表運動時若將誤差來源僅視為白雜訊,將會低估速度誤差約1-13倍。


    Most researches on geodetic measurements considered only time-independent noises (white noise), while time-dependent noises (color noises) are also important factors that affect the precision of geodetic data. Previous analysis of GPS time series found that the color noises (for example, flicker noise and random-walk noise) are significant components and ignoring their contributions would underestimate the errors of velocity estimation. In this study, I calculated amplitudes of different noises of GPS time series and evaluate more accurate crustal deformation rates and errors than that considered only the white noise.
    This study used GPS time series spanned at least 2 years from 54 stations in EBAR and 60 stations in YSRP networks in the western U.S. with most sites on bed rock, Two methods were applied to estimate the amplitudes of different noise models associated with each time series: The spectral analysis that is used to determine the underlying character of the observations in frequency domain, and the maximum likelihood method that does the analysis in time domain. We assume that there are only two sources of noise in the time series and apply two models, white noise plus flicker noise (WHFN) and white noise plus random-walk noise (WHRW), to evaluate the amplitudes of each noise model. At last we will compare the results of these two methods. My results indicate that the WHFN model is preferred for most of the GPS time series from the two networks, with amplitudes of flicker noise larger than 0.5 mm/yr^0.25. The amplitudes of flicker noise of PBO stations in two regions are larger than other stations. It is likely that the monument and antenna design of PBO stations are better than other stations, and other stations have longer time series. In this study, the amplitudes of flicker noise from YSRP are larger than EBAR network. It is likely that YSRP have intense climate and located at higher latitude, the atmospheric and ionospheric effects will be larger than EBAR. In addition, this study suggests that considering only time-independent noises in GPS measurements would underestimate the errors of velocity estimation by a factor of 1-13.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 本文範疇與內容 4 第二章 研究區域簡介 5 2.1 東盆嶺地區(Eastern Basin and Range) 5 2.2 黃石-蛇河平原地區(Yellowstone – Snake River Plain) 7 第三章 研究方法與資料處理 13 3.1 雜訊簡介 13 3.2 資料選取及處理 14 3.2.1 東盆嶺(Eastern Basin and Range)觀測網 15 3.2.2 黃石-蛇河平原(Yellowstone – Snake River Plain)觀測網 15 3.2.3 儀器基座 16 3.3 頻譜分析(Spectral analysis) 17 3.4 最大概似估計法(Maximum likelihood estimation,MLE) 17 3.5 色雜訊對速度誤差影響的估計 19 3.6 Create and Analyze Time Series (CATS) 21 第四章 計算結果與討論 35 4.1 最佳雜訊模型分析 35 4.2 雜訊振幅及其影響因素 37 4.3 交叉周期(crossover period) 39 4.4 與其他區域的雜訊性質之比較 40 4.5 速度誤差的比例參數(Scale factor) 41 第五章 結論 65 參考文獻 66 附錄 73

    Agnew, D. C. (1992). The time-domain behavior of power-law noises. Geophys. Res. Lett., 19(4), 333-336. doi: 10.1029/91gl02832
    Axen, G. J., Taylor, W. J., & Bartley, J. M. (1993). Space-time patterns and tectonic controls of Tertiary extension and magmatism in the Great-Basin of the western United-States. Geological Society of America Bulletin, 105(1), 56-76.
    Bennett, R. A., Wernicke, B. P., & Davis, J. L. (1998). Continuous GPS measurements of contemporary deformation across the Northern Basin and Range Province. Geophys. Res. Lett., 25(4), 563-566. doi: 10.1029/98gl00128
    Bennett, R. A., Wernicke, B. P., Niemi, N. A., Friedrich, A. M., & Davis, J. L. (2003). Contemporary strain rates in the northern Basin and Range province from GPS data. Tectonics, 22(2), 1008. doi: 10.1029/2001tc001355
    Beran, J. (1994). Statistics for long-memory processes. New York: Chapman & Hall, 315 pp.
    Bjarnasonm I. T. and J. C. Pechmann (1989), Contemporary tectonics of the Wasatch Front region, Utah, from earthquake focal mechanisms, Bull. Seismol. Soc. Am., 79,731-755
    Byrd, J. O. D., Smith, R. B., & Geissman, J. W. (1994). The Teton fault, Wyoming: Topographic signature, neotectonics, and mechanisms of deformation. J. Geophys. Res., 99(B10), 20095-20122. doi: 10.1029/94jb00281
    Chang, W. L. (2004). GPS (global positioning system) studies of the Wasatch fault zone, Utah, with implications for elastic and viscoelastic fault behavior and earthquake hazard, Ph.D. Dissertation, Univ. of Utah, Salt Lake City, 201 pp.
    Chang, W. L., & Smith, R. B. (2002). Integrated seismic-hazard analysis of the Wasatch Front, Utah. Bull. Seismol. Soc. Am., 92(5), 1904-1922. doi: 10.1785/0120010181
    Christiansen, R. L. (2001), The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana, U.S. Geol. Surv. Prof. Pap., 729-G, 120 pp.
    Dixon, T. H., Mao, A., Bursik, M., Heflin, M., Langbein, J., Stein, R., & Webb, F. (1997). Continuous monitoring of surface deformation at Long Valley Caldera, California, with GPS. J. Geophys. Res., 102(B6), 12017-12034. doi: 10.1029/96jb03902
    Dixon, T. H., Miller, M., Farina, F., Wang, H., & Johnson, D. (2000). Present-day motion of the Sierra Nevada block and some tectonic implications for the Basin and Range province, North American Cordillera. Tectonics, 19(1), 1-24. doi: 10.1029/1998tc001088
    Dixon, T. H., Robaudo, S., Lee, J., & Reheis, M. C. (1995). Constraints on present-day Basin and Range deformation from space geodesy. Tectonics, 14(4), 755-772. doi: 10.1029/95tc00931
    Eddington, P. K., R. B. Smith, and C. Renggli (1987), Kinematic of Basin and Range intraplate extension, in Continental Extensional Tectonics, edited by M. P. Coward, et al., Spec. Pub. Geol. Soc. Lond., 28, Blackwells Scientific Publications, Oxford, 371-392.
    Ehlers, T. A., & Chapman, D. S. (1999). Normal fault thermal regimes: conductive and hydrothermal heat transfer surrounding the Wasatch fault, Utah. Tectonophysics, 312(2-4), 217-234. doi: 10.1016/s0040-1951(99)00203-6
    Farrell, J., Husen, S., & Smith, R. B. (2004). B-Value Mapping of the Yellowstone Volcanic and Hydrothermal System. AGU Fall Meeting Abstracts, 13, 1030.
    Friedrich, A. M., Wernicke, B. P., Niemi, N. A., Bennett, R. A., & Davis, J. L. (2003). Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. J. Geophys. Res., 108(B4), 2199. doi: 10.1029/2001jb000682
    Hammond, W. C., & Thatcher, W. (2004). Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System. J. Geophys. Res., 109(B8), B08403. doi: 10.1029/2003jb002746
    Husen, S., Smith, R. B., & Waite, G. P. (2004). Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging. J. Volcanol. Geotherm. Res., 131(3-4), 397-410. doi: 10.1016/s0377-0273(03)00416-5
    Johnson, H. O., and F. K. Wyatt (1994), Geodetic network design for fault mechanics studies, Manuscr. Geod, 19,309-323.
    Jordan, M., Smith, R. B., Puskas, C., Farrell, J., & Waite, G. (2005). The Yellowstone Hotspot and Related Plume: Volcano-Tectonics, Tomography, Kinematics, Dynamics and Mantle Flow. AGU Fall Meeting Abstracts, 51, 1388.
    Langbein, J. (2004). Noise in two-color electronic distance meter measurements revisited. J. Geophys. Res., 109(B4), B04406. doi: 10.1029/2003jb002819
    Langbein, J. (2008). Noise in GPS displacement measurements from Southern California and Southern Nevada. J. Geophys. Res., 113(B5), B05405. doi: 10.1029/2007jb005247
    Langbein, J., & Johnson, H. (1997). Correlated errors in geodetic time series: Implications for time-dependent deformation. J. Geophys. Res., 102(B1), 591-603. doi: 10.1029/96jb02945
    Langbein, J. O. (2003). Deformation of the Long Valley Caldera, California: inferences from measurements from 1988 to 2001. J. Volcanol. Geotherm. Res., 127(3-4), 247-267. doi: 10.1016/s0377-0273(03)00172-0
    Lowry, A. R., & Smith, R. B. (1995). Strength and rheology of the western U.S. Cordillera. J. Geophys. Res., 100(B9), 17947-17963. doi: 10.1029/95jb00747
    Machette, M. N., S. F. Personiusm, and A. R. Nelson (1992), Paleoseismology of the Wasatch fault zone: A summary of recent investigationsm , interpretations, and conclusions, in Assessment of Regional Earthquake Hazards and Ris Along the Wasatch Front, Utah, edited by P. L. Gori and W. W. Hays, U,S. Geol. Surv. Profess. Paper 1500-A-J, A1-A71.
    Mao, A., Harrison, C. G. A., & Dixon, T. H. (1999). Noise in GPS coordinate time series. J. Geophys. Res., 104(B2), 2797-2816. doi: 10.1029/1998jb900033
    Martinez, L. J., Meertens, C. M., & Smith, R. B. (1998). Rapid deformation rates along the Wasatch Fault Zone, Utah, from first GPS measurements with implications for earthquake hazard. Geophys. Res. Lett., 25(4), 567-570. doi: 10.1029/98gl00090
    McCalpin, J. P., & Nishenko, S. P. (1996). Holocene paleoseismicity, temporal clustering, and probabilities of future large (M > 7) earthquakes on the Wasatch fault zone, Utah. J. Geophys. Res., 101(B3), 6233-6253. doi: 10.1029/95jb02851
    Newhall, C. G., & Dzurisin, D. (1988). Historical unrest at large calderas of the world. Washington Denver, CO: U.S. G.P.O.
    Newman, A., Stein, S., Weber, J., Engeln, J., Mao, A., & Dixon, T. (1999). Slow Deformation and Lower Seismic Hazard at the New Madrid Seismic Zone. Science, 284(5414), 619-621. doi: 10.1126/science.284.5414.619
    Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System., Ph.D. Dissertation, University of California, San Diego, 305 pp.
    Pechmann, J. C. and W. J. Arabasz (1995), The problem of the random earthquake in seismic hazard analysis: Wasatch Front region, Utah, in Environmental and Engineering Geology of the Wasatch Front Region: 1995Symposium and Field Conference, W. R. Lund (Editor), Utah Geol. Assoc., 77-93.
    Pilgram, B., & Kaplan, D. T. (1998). A comparison of estimators for 1/f noise. Physica D Nonlinear Phenomena, 114(1-2), 108-122. doi: 10.1016/S0167-2789(97)00188-7
    Press, W. H. (1992). Numerical recipes in FORTRAN : the art of scientific computing (2nd ed.). Cambridge England ; New York, NY, USA: Cambridge University Press. 963 pp.
    Puskas, C. M., Smith, R. B., Meertens, C. M., & Chang, W. L. (2007). Crustal deformation of the Yellowstone-Snake River Plain volcano-tectonic system: Campaign and continuous GPS observations, 1987-2004. J. Geophys. Res., 112(B3), B03401. doi: 10.1029/2006jb004325
    Savage, J. C., Lisowski, M., & Prescott, W. H. (1992). Strain Accumulation Across the Wasatch Fault Near Ogden, Utah. J. Geophys. Res., 97(B2), 2071-2083. doi: 10.1029/91jb02798
    Schwartz, D. P., & Coppersmith, K. J. (1984). Fault Behavior and Characteristic Earthquakes: Examples From the Wasatch and San Andreas Fault Zones. J. Geophys. Res., 89(B7), 5681-5698. doi: 10.1029/JB089iB07p05681
    Smith, R. B. and M. L. Sbar (1974), Contemporary tectonic and seismicity of the western United States with emphasis on the Intermountain Seismic Belt, Bull. Geol. Soc. Am., 85, 1205-1218.
    Smith, R. B., and W. J. Arabasz (1991), Seismicity of the Intermountain Seismic Belt, in Neotectonics of North America, edited by D. B. Slemmons et al., pp. 185– 228, Geol. Surv. of Am., Boulder, Colo.
    Snay, R. A., Smith, R. B., & Soler, T. (1984). Horizontal Strain Across the Wasatch Front Near Salt Lake City, Utah. J. Geophys. Res., 89(B2), 1113-1122. doi: 10.1029/JB089iB02p01113
    Stockli, D. F. (2000), Regional timing and spatial distribution of Miocene extension in the northern Basin and Range province, Ph.D. Dissertation, Stanford University, Stanford, California, 239 pp.
    Thatcher, W., Foulger, G. R., Julian, B. R., Svarc, J., Quilty, E., & Bawden, G. W. (1999). Present-Day Deformation Across the Basin and Range Province, Western United States. Science, 283(5408), 1714-1718. doi: 10.1126/science.283.5408.1714
    Tranquilla, J. M., Carr, J. P., & Al-Rizzo, H. M. (1994). Analysis of a choke ring groundplane for multipath control in Global Positioning System (GPS) applications. Antennas and Propagation, IEEE Transactions on, 42(7), 905-911.
    Waite, G. P., & Smith, R. B. (2002). Seismic evidence for fluid migration accompanying subsidence of the Yellowstone caldera. J. Geophys. Res., 107(B9), 2177. doi: 10.1029/2001jb000586
    Waite, G. P., Smith, R. B., & Allen, R. M. (2006). VP and VS structure of the Yellowstone hot spot from teleseismic tomography: Evidence for an upper mantle plume. J. Geophys. Res., 111(B4), B04303. doi: 10.1029/2005jb003867
    Wheeler, R. L. and K. B. Krystinik (1992), Persistent and nonpersistent segmentation of the Wasatch Fault Zone, Utah: statistical analysis for evaluation of seismic hazard, in Assessment of Regional Earthquake Hazards and Risk Along the Wasatch Front, Utah, P.L. Gori and W. W. Hays (Editors), U.S. Geol. Surv. Profess. Paper 1500-A-J, B1-B47.
    Williams, S. D. P. (2003). The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. Journal of Geodesy, 76(9-10), 483-494. doi: 10.1007/s00190-002-0283-4
    Williams, S. D. P. (2008). CATS: GPS coordinate time series analysis software. GPS Solutions, 12(2), 147-153. doi: 10.1007/s10291-007-0086-4
    Williams, S. D. P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., Prawirodirdjo, L., Miller, M., Johnson, D. J. (2004). Error analysis of continuous GPS position time series. J. Geophys. Res., 109(B3). doi: 10.1029/2003jb002741
    Wyatt, F. (1982). Displacement of Surface Monuments: Horizontal Motion. J. Geophys. Res., 87(B2), 979-989. doi: 10.1029/JB087iB02p00979
    Wyatt, F. K. (1989). Displacement of Surface Monuments: Vertical Motion. J. Geophys. Res., 94(B2), 1655-1664. doi: 10.1029/JB094iB02p01655
    Wyatt, F. K., and D. C. Agnew (2005), The PIN1 and PIN2 GPS Sites at Pinon Flat Observatory, Tech. Rep. 33, Scripps Inst. of Oceanogr., La Jolla, Calif. (Available at http://repositories.cdlib.org/sio/techreport/33)
    Yu, S.-B., Hsu, Y.-J., Kuo, L.-C., Chen, H.-Y., Liu, C.-C. (2003). GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake. J. Geophys. Res., 108(B11), 2520. doi: 10.1029/2003jb002396
    Yuan, H. Y., & Dueker, K. (2005). Teleseismic P-wave tomogram of the Yellowstone plume. Geophys. Res. Lett., 32(7). doi: 10.1029/2004gl022056
    Zhang, J., Bock, Y., Johnson, H., Fang, P., Williams, S., Genrich, J., Wdowinski S., Behr, J. (1997). Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities. J. Geophys. Res., 102(B8), 18035-18055. doi: 10.1029/97jb01380
    Zoback, M. L. (1983), Structure and Cenozoic tectonism along the Wasatch fault zone, Utah, in Tectonic and Stratigraphic Studies in the Eastern Great Basin, DM Miller, VR Todd, and KA Howard, Editors, Geol. Soc. Am. Mere. 157, 3-27.
    Zoback, M. L. (1989). State of Stress and Modern Deformation of the Northern Basin and Range Province. J. Geophys. Res., 94(B6), 7105-7128. doi: 10.1029/JB094iB06p07105
    Zoback, M. L., & Zoback, M. (1980). State of Stress in the Conterminous United States. J. Geophys. Res., 85(B11), 6113-6156. doi: 10.1029/JB085iB11p06113
    田云鋒, 沈正康, 李鵬. (2010). 連續GPS觀測中的相關噪聲分析. 地震學報(06), 696-704.

    QR CODE
    :::