跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉雅婷
Ya-ting Yeh
論文名稱: 2×2方塊矩陣的數值域
Numerical Ranges of 2-by-2 Block Matrices
指導教授: 高華隆
Hwa-long Gau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 99
語文別: 英文
論文頁數: 34
中文關鍵詞: 方塊矩陣三對角線矩陣數值域
外文關鍵詞: Tridiagonal matrix, Numerical range, Block matrix
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討對角方塊都是零的2×2方塊矩陣的數值域。我們證明當B是k×k(k>2)矩陣滿足B*B是k-1維的單位矩陣和一維0矩陣的直和,則此2×2方塊矩陣其數值域會是兩個內切在[-1,1]×[-1,1]正方形裡的橢圓的凸包。另一方面,只要B滿足∥B∥=1,我們也對此2×2方塊矩陣其數值域的邊界給出刻劃。此外,對於4階的2×2方塊矩陣 ,我們也給出其數值域會是兩個內切在[-1,1]×[-1,1]正方形裡橢圓的凸包的充分必要條件。


    In this thesis, we study the numerical range of a 2-by-2 block matrix with zero diagonal block. We show that if B∈M_(k−1,k) (k ≥ 3) satisfies BB*=I_(k−1), then the numerical range of the 2-by-2 block matrix is the convex hull of two ellipses inscribed in the square [−1, 1] × [−1, 1]. On the other hand, we also show that if B ∈ M_k (k ≥ 3) satisfies
    ∥B∥=1, then the numerical range of the 2-by-2 block matrix has 4 line segments on its boundary. Among other things, we consider the 2-by-2 block matrix A ∈ M_4, and we give a sufficient and necessary condition in terms of entries of B for numerical range of A being the convex hull of two ellipses.

    Abstract (in English) ii Contents iii 1 Introduction 1 2 Basic properties for numerical ranges 4 3 Numerical Ranges of 2-by-2 Block Matrices 6 References 34

    [1] M.-T. Chien and Hiroshi Nakazato, The numerical range of a tridiagonal
    operator, J. Math. Anal. Appl., 373 (2011), 297–304.
    [2] H.-L. Gau and P. Y. Wu, Condition for the numerical range to contain an
    elliptic disc, Linear Algebra Appl:, 364 (2003), 213–222.
    [3] H.-L. Gau and P. Y. Wu, Finite blaschke products of contractions, Linear
    Algebra Appl:, 368 (2003), 359–370.
    [4] H.-L. Gau and P. Y. Wu, Defect indices of powers of a contraction, Linear
    Algebra Appl:, 432 (2010), 2824–2833.
    [5] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University
    Press, Cambridge, 1991.
    [6] D. S. Keeler, L. Rodman and I. M. Spitkovsky, The numerical range of 3×3
    matrices, Linear Algebra Appl:, 252(1997), 115–139.
    [7] A. Lenard, The numerical range of a pair of projections, Journal of
    functional analysis, 10(1972), 410–423
    [8] P. Y. Wu, Numerical Ranges of Hilbert Space Operators, preprint.

    QR CODE
    :::