跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳旺輝
Wang-Hui Wu
論文名稱: MOF-5晶體與MOF-5/氧化鋁複合薄膜之探討
nvestigation of Synthesis Conditions of MOF-5 Crystals and Related MOF-5/α-Al2O3 Membranes
指導教授: 張博凱
Bor-Kae Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 109
中文關鍵詞: 金屬框架材料薄膜晶體
外文關鍵詞: metal-organic frameworks, membrane, crystal
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬框架材料metal-organic frameworks (MOFs)屬於多孔晶體物質,是由金屬離子與有機配體所組成。因為金屬框架材料有獨特的特性,所以有各式各樣的應用於不同領域,像是吸附、藥物輸送、催化、薄膜等。由於特殊結構、有機官能基、高比表面積、卓越的孔隙體積,這種材料的主要應用在氫氣儲存與二氧化碳分離。在工業上,薄膜已經常被使用。包括利用金屬框架材料所做得創新薄膜,已經廣泛運用在氣體分離。目前在文獻中,MOF-5是最有代表性的金屬有機框架材料,已經成功地合成MOF-5薄膜於氧化鋁上,藉由溶劑熱法。
    本研究利用溶劑熱法合成MOF-5晶體與MOF-5/氧化鋁複合薄膜,並探討不同反應條件。首次成功合成MOF-5晶體是藉由溶劑熱法於反應溫度130℃、反應時間為21小時的情況下。為了瞭解反應時間、反應溫度以及金屬與有機配體的比例影響於MOF-5合成,數多合成條件被探討。本研究合成MOF-5薄膜於不同反應溫度下之探討。MOF-5晶體與MOF-5/氧化鋁複合薄膜藉由X光繞射分析儀、掃描式電子顯微鏡、傅立葉轉換紅外線光譜儀做分析鑑定。由X光繞射分析儀所產生的圖譜可以發現到有另一MOF產生,稱為MOF-69c。推測在合成MOF-5晶體前,MOF-69c與中間產物會先被產生。本次的研究結果發現到,反應時間、反應溫度以及有機配體的比例對於MOF-5合成有重要的影響。在較低的反應時間或反應溫度下、不容易產生出MOF-5晶體產生,是因為反應能量不足,無法產生反應。而在金屬與配體比例為3:1、1:1的時,不容易得到產物。因為本身沒有強烈的化學反應且DMF做溶液交換時,未反應的反應物被移除了,因此不容易得到產物。未來會將合成出來的MOF-5薄膜藉由自製的滲透機台做測試。


    Metal-organic frameworks (MOFs) are porous crystalline materials consisting of metal ions linked together by organic bridging ligands. Because of their outstanding properties, MOFs are used in a variety of promising applications in the fields of adsorption, drug delivery, catalysis, membranes, etc. With its special structure, functional groups, high surface area, and exceptional pore volume, one of the main applications of such material is hydrogen storage and CO2 separation. In industry, membranes, including novel membranes utilizing MOFs, are often used extensively to perform gas separation. Currently in literature, MOF-5, which is the most representative MOF, has been successfully synthesized on membrane via secondary growth on substrates such as porous α-alumina.
    In this work, MOF-5 crystals and related MOF-5/α-Al2O3 membranes were synthesized to systematically investigate the various reaction conditions. MOF-5 crystals were successfully formed at 130℃ and 21 hours via solvothermal synthesis. In order to understand the impact of reaction time, temperature and metal-to-ligand ratio on synthesizing MOF-5, several synthesis conditions were investigated. Then, synthesis of MOF-5 membranes with different temperature were also investigated. MOF-5 crystals and related MOF-5/α-Al2O3 membranes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The results of the XRD pattern showed the presence of another crystal called MOF-69c. This suggests that before pure MOF-5 can be formed, MOF-69c and intermediate phases were synthesized first. Successfully changing for the first time the synthesis temperature to 120℃, it was found that MOF-5 crystals were formed, but with the intermediate phases present. As a result of this study, the reaction time, temperature, and metal-to-ligand ratio have been found to have a vital influence on forming MOF-5. We have laid the foundation for finding the best synthesis parameters to synthesize MOF-5 on porous α-alumina. Future work will include gas permeation of various gases, both single and binary components on membrane samples using a homemade permeation setup.

    摘要 i Abstract iii 謝誌 v 第一章 介紹 1 1.1 水熱與溶劑熱法 1 1.2 金屬框架材料之介紹 4 1.2.1 何謂MOF 4 1.2.2 MOF-5的特性 7 1.2.3 MOF-5薄膜 11 第二章 研究動機 16 2.1 研究動機 16 2.2 論文架構 18 第三章 實驗材料與方法 20 3.1 實驗藥品 20 3.2 實驗儀器 22 3.3 實驗流程 24 3.3.1 MOF-5之製備 24 3.3.2 氧化鋁片之前處理 27 3.3.3 MOF-5/α-Al2O3複合薄膜之製備 28 3.4 儀器分析與鑑定 31 3.4.1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 31 3.4.2 X光繞射分析儀(X-ray Diffraction, XRD) 34 3.4.3 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 36 第四章 結果與討論 38 4.1 MOF-5晶體合成 39 4.2 探討反應條件對MOF-5晶體之形貌影響 41 4.2.1 反應溫度對MOF-5晶體之影響 43 4.2.2 反應物莫爾比與反應時間對MOF-5晶體之影響 46 4.3 MOF-5/α-Al2O3複合薄膜 50 4.3.1 MOF-5/α-Al2O3複合薄膜之XRD與SEM檢測 50 4.3.2 MOF-5/α-Al2O3複合薄膜母液中之晶體SEM檢測 65 4.3.3 MOF-5/α-Al2O3複合薄膜母液中之晶體之XRD 69 4.3.4 MOF-5/α-Al2O3複合薄膜之FTIR之檢測 73 4.3.5 MOF-5/α-Al2O3複合薄膜之EDS之檢測 77 4.4 MOF-69c/MOF-5/α-Al2O3複合薄膜 81 第五章 結論與未來展望 85 5.1 結論 85 5.2 未來展望 86 第六章 參考文獻 87

    [1] S. Feng and L. Guanghua, "Chapter 4 - Hydrothermal and Solvothermal Syntheses A2 - Xu, Ruren," in Modern Inorganic Synthetic Chemistry, W. Pang and Q. Huo, Eds., ed Amsterdam: Elsevier, 2011, pp. 63-95.
    [2] 馬振基, "奈米材料科技原理與應用," 全華科技圖書股份有限公司, pp. p.4.31-4.36, 2004.
    [3] 羅. 戴明鳳, 林鴻明, 鄭振宗, 蘇程裕, 吳育民, "奈米科技導論," 全華科技圖書股份有限公司, pp. p. 3.48-3.50, 2008.
    [4] G. Ferey, "Hybrid porous solids: past, present, future," Chem Soc Rev, vol. 37, pp. 191-214, Jan 2008.
    [5] Z. Zhao, X. Ma, A. Kasik, Z. Li, and Y. S. Lin, "Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes," Industrial & Engineering Chemistry Research, vol. 52, pp. 1102-1108, 2013.
    [6] P. Pachfule, R. Das, P. Poddar, and R. Banerjee, "Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link," Crystal Growth & Design, vol. 11, pp. 1215-1222, 2011.
    [7] C. McKinstry, E. J. Cussen, A. J. Fletcher, S. V. Patwardhan, and J. Sefcik, "Effect of Synthesis Conditions on Formation Pathways of Metal Organic Framework (MOF-5) Crystals," Crystal Growth & Design, vol. 13, pp. 5481-5486, 2013.
    [8] H. Li, W. Shi, K. Zhao, H. Li, Y. Bing, and P. Cheng, "Enhanced hydrostability in Ni-doped MOF-5," Inorg Chem, vol. 51, pp. 9200-7, Sep 3 2012.
    [9] G. Demazeau, "Solvothermal reactions: an original route for the synthesis of novel materials," Journal of Materials Science, vol. 43, pp. 2104-2114, 2007.
    [10] J. A. Botas, G. Calleja, M. Sanchez-Sanchez, and M. G. Orcajo, "Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties," Langmuir, vol. 26, pp. 5300-3, Apr 20 2010.
    [11] S. R. Ahrenholtz, C. C. Epley, and A. J. Morris, "Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism," J Am Chem Soc, vol. 136, pp. 2464-72, Feb 12 2014.
    [12] Y. Yoo, Z. Lai, and H.-K. Jeong, "Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth," Microporous and Mesoporous Materials, vol. 123, pp. 100-106, 2009.
    [13] D. J. Tranchemontagne, J. R. Hunt, and O. M. Yaghi, "Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0," Tetrahedron, vol. 64, pp. 8553-8557, 2008.
    [14] S. Qiu, M. Xue, and G. Zhu, "Metal-organic framework membranes: from synthesis to separation application," Chem Soc Rev, vol. 43, pp. 6116-40, Aug 21 2014.
    [15] S. S. Kaye, A. Dailly, O. M. Yaghi, and J. R. Long, "Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5)," Journal of the American Chemical Society, vol. 129, pp. 14176-14177, 2007/11/01 2007.
    [16] P. Davydovskaya, R. Pohle, A. Tawil, and M. Fleischer, "Work function based gas sensing with Cu-BTC metal-organic framework for selective aldehyde detection," Sensors and Actuators B: Chemical, vol. 187, pp. 142-146, 2013.
    [17] J. Hu, H. Cai, H. Ren, Y. Wei, Z. Xu, H. Liu, et al., "Mixed-Matrix Membrane Hollow Fibers of Cu3(BTC)2 MOF and Polyimide for Gas Separation and Adsorption," Industrial & Engineering Chemistry Research, vol. 49, pp. 12605-12612, 2010/12/15 2010.
    [18] J. Yang, A. Sudik, C. Wolverton, and D. J. Siegel, "High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery," Chem Soc Rev, vol. 39, pp. 656-75, Feb 2010.
    [19] J. Gibbins and H. Chalmers, "Carbon capture and storage," Energy Policy, vol. 36, pp. 4317-4322, 2008.
    [20] K. A. Hoff, O. Juliussen, O. Falk-Pedersen, and H. F. Svendsen, "Modeling and Experimental Study of Carbon Dioxide Absorption in Aqueous Alkanolamine Solutions Using a Membrane Contactor," Industrial & Engineering Chemistry Research, vol. 43, pp. 4908-4921, 2004/08/01 2004.
    [21] D. Ma, Y. Li, and Z. Li, "Tuning the moisture stability of metal-organic frameworks by incorporating hydrophobic functional groups at different positions of ligands," Chem Commun (Camb), vol. 47, pp. 7377-9, Jul 14 2011.
    [22] A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, "Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks," Accounts of Chemical Research, vol. 43, pp. 58-67, 2010/01/19 2010.
    [23] H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, "Design and synthesis of an exceptionally stable and highly porous metal-organic framework," Nature, vol. 402, pp. 276-279, 11/18/print 1999.
    [24] J. R. Li, J. Sculley, and H. C. Zhou, "Metal-organic frameworks for separations," Chem Rev, vol. 112, pp. 869-932, Feb 8 2012.
    [25] A. Kasik and Y. S. Lin, "Organic solvent pervaporation properties of MOF-5 membranes," Separation and Purification Technology, vol. 121, pp. 38-45, 2014.
    [26] N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, and O. M. Yaghi, "Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units," Journal of the American Chemical Society, vol. 127, pp. 1504-1518, 2005/02/01 2005.
    [27] S. Hausdorf, J. Wagler, R. Moβig, and F. O. R. L. Mertens, "Proton and Water Activity-Controlled Structure Formation in Zinc Carboxylate-Based Metal Organic Frameworks," The Journal of Physical Chemistry A, vol. 112, pp. 7567-7576, 2008/08/01 2008.
    [28] Z. Zhao, X. Ma, Z. Li, and Y. S. Lin, "Synthesis, characterization and gas transport properties of MOF-5 membranes," Journal of Membrane Science, vol. 382, pp. 82-90, 2011.
    [29] S. Hermes, F. Schröder, R. Chelmowski, C. Wöll, and R. A. Fischer, "Selective Nucleation and Growth of Metal−Organic Open Framework Thin Films on Patterned COOH/CF3-Terminated Self-Assembled Monolayers on Au(111)," Journal of the American Chemical Society, vol. 127, pp. 13744-13745, 2005/10/01 2005.
    [30] S. Hermes, D. Zacher, A. Baunemann, C. Wöll, and R. A. Fischer, "Selective Growth and MOCVD Loading of Small Single Crystals of MOF-5 at Alumina and Silica Surfaces Modified with Organic Self-Assembled Monolayers," Chemistry of Materials, vol. 19, pp. 2168-2173, 2007/05/01 2007.
    [31] Y. Yoo and H.-K. Jeong, "Heteroepitaxial Growth of Isoreticular Metal−Organic Frameworks and Their Hybrid Films," Crystal Growth & Design, vol. 10, pp. 1283-1288, 2010.
    [32] Y. Liu, Z. Ng, E. A. Khan, H.-K. Jeong, C.-b. Ching, and Z. Lai, "Synthesis of continuous MOF-5 membranes on porous α-alumina substrates," Microporous and Mesoporous Materials, vol. 118, pp. 296-301, 2009.
    [33] A. Betard and R. A. Fischer, "Metal-organic framework thin films: from fundamentals to applications," Chem Rev, vol. 112, pp. 1055-83, Feb 8 2012.
    [34] Y. Yoo and H. K. Jeong, "Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition," Chem Commun (Camb), pp. 2441-3, Jun 7 2008.
    [35] M. J. D’Souza, K. E. Shuman, A. O. Omondi, and D. N. Kevill, "Detailed Analysis for the Solvolysis of Isopropenyl Chloroformate," European journal of chemistry (Print), vol. 2, pp. 130-135, 2011.
    [36] P. Falcaro, A. J. Hill, K. M. Nairn, J. Jasieniak, J. I. Mardel, T. J. Bastow, et al., "A new method to position and functionalize metal-organic framework crystals," Nat Commun, vol. 2, p. 237, 2011.
    [37] Y. Yoo, V. Varela-Guerrero, and H. K. Jeong, "Isoreticular metal-organic frameworks and their membranes with enhanced crack resistance and moisture stability by surfactant-assisted drying," Langmuir, vol. 27, pp. 2652-7, Mar 15 2011.
    [38] J. R. Long and O. M. Yaghi, "The pervasive chemistry of metal-organic frameworks," Chemical Society Reviews, vol. 38, pp. 1213-1214, 2009.
    [39] W.-J. Son, J. Kim, J. Kim, and W.-S. Ahn, "Sonochemical synthesis of MOF-5," Chemical Communications, pp. 6336-6338, 2008.

    QR CODE
    :::