| 研究生: |
鄭淞方 Song-Fang Cheng |
|---|---|
| 論文名稱: |
非線性二階常微方程組兩點邊界值問題之解的存在性與唯一性 The Existence and Uniqueness of Solutions for a Two Point Boundary Value Problem of Nonlinear System of Ordinary Differential Equations. |
| 指導教授: |
洪盟凱
John M. Hong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 20 |
| 中文關鍵詞: | 兩點邊界值問題 、自相似性 |
| 外文關鍵詞: | limiting viscosity method, two point boundary value problem |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文摘要
我們的論文主題是要證明某些非線性二階常微方程組兩點邊界值問題之解的存在性與唯一性。證明的原理主要是推廣C.Dafermos的方法到具有源項的方程組。我們的做法主要是建立在解的自相似性上,並利用此性質把原系統化成一個二階常微分方程組。我們假設所有可能的解是一致有界的情況下,我們使用Leray-Shauder定理來建立解的存在性。最後我們使用Gronwall 不等式性質來建立解的唯一性。
Abstract
We prove the existence and uniqueness of solution for a two-point boundary value problem of some nonlinear system of second order ordinary differential equations. The nonlinear system comes from the reduction of a nonlinear balance laws with viscosity under the assumption that the solution is self-similar. We construct the solution by Leray-Schauder fixed point theorem under the assumption that all possible solutions have an uniform bound. Moreover, by provide the estimate of the gradient of solution, and using the Gronwall inequality, we establish the uniqueness of solution.
References
[1] C. M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method, Arch. Ration. Mech. Anal., 52 (1973), 1-9.
[2] C. M. Dafermos, Solution of the Riemann problem for a class of hyperbolic system of Conservation laws by the viscosity methed, Arch. Ration. Mech. Anal.52 (1973), 1-9.
[3] C. M. Dafermos and R. J. Diperna, The Riemann problem for certain classes of hyperbolic systems of conservation laws, J. Diff. Equations, 20 (1976), 90-114.
[4] G. Dal Maso, P. LeFloch and F. Murat, Definition and weak stability of non- conservative products, J. Math. Pure. Appl., 74 (1995), 483-548.
[5] H. Fan, One-phase Riemann problem and wave interaction in systems of con- servation laws of mixed type, SIAM. J. Math. Anal., 24 (1993), 840-865.
[6] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,Comm. Pure Appl. Math., 18 (1956), 697-715.
[7] J. M. Hong, An extension of Glimm’s method to inhomogeneous strictly hy- perbolic systems of conservation laws by “weaker than wealer” solutions of the Riemann problem, J. Diff. Equations, (2005), to appear.
[8] J. M. Hong and B. Temple, The generic solution of the Riemann problem in a neighborhood of a point of resonance for systems of nonlinear balance laws, Methods Appl. Anal., 10 (2003), 279-294.
[9] J. M. Hong and B. Temple, A bound on the total variation of the conserved quantities for solutions of a general resonant nonlinear balance law, SIAM J. Appl. Math., 64 (2004), 819-857.
[10] E. Isaacson and B. Temple, Nonlinear resonant in inhomogenous systems of conservation laws, Contemporary Mathematics, vol. 108, 1990.
[11] K. T. Joseph and P. G. LeFloch, Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits, Comm. Pure. Appl. Anal., 1 (2002), 51-67.
[12] P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl. Math.,10 (1957), 537-566.
[13] P. G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form, Comm. Partial Diff. Equations, 13 (1988) 669-727.
[14] P. G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for Mathematics and its Applications, Minneapolis, Preprint593, 1989.
[15] L. Leibovich, Solution of the Riemann problem for hyperbolic systems of quasi- linear equations without convexity conditions, J. Math. Anal. Appl. 45 (1974),81-90.
[16] T. P. Liu, Quasilinear hyperbolic systems, Comm. Math. Phys., bf 68 (1979),141-172.
[17] X.-B. Lin and S. Schecter, Stability of self-similar solutions of the Dafermos reg- ularization of a system of conservation laws, SIAM J. Math. Anal., 35 (2003),8849-21.
[18] M. Slemrod, Dynamic phase transition in a van der Waals fluid, J. Diff. Equa- tions, 52 (1984), 1-23.
[19] M. Slemrod, A limiting “viscosity” approach to the Riemann problem for ma- terials exhibiting change of phase, Arch. Ration. Mech. Anal., 105 (1989),327-365.
[20] M. Slemrod and A. Tzavaras, A limiting viscosity approach for the Riemann problem in isentropic gas dynamics, Indiana Univ. Math. J., 38 (1989), 1047-1073.
[21] J. A. Smoller, On the solution of the Riemann problem with general stepdata for an extended class of hyperbolic system, Mich. Math. J., 16, 201-210.
[22] J. Smoller, Shock waves and reaction-dffusion equations, Springer, New York, 1983.
[23] B. Temple, Global solution of the Cauchy problem for a class of 2×2 nonstrictly hyperbolic conservation laws, Adv. Appl. Math. 3 (1982), 335-375.
[24] B.Temple, Global solution of the Cauchy problem for a class of 2 × 2 nonstrictly hyperbolic conservation laws, Adv. Appl. Math., 3 (1982), 335-375.
[25] A. E. Tzavaras, Wave interactions and variation estimates for self-similar zero- viscosity limits in systems of conservation laws, Arch. Ration. Mech. Anal. 135 (1996), 1-60.