| 研究生: |
郭庭君 Ting-Chun Kuo |
|---|---|
| 論文名稱: |
以離散元素法電腦模擬探討顆粒體在不同置入物儲槽中的傳輸性質與內部性質 Numerical Study on Transport and Internal Properties of Granular Materials in Cylindrical Silos with Different Inserts Using Discrete Element Modelling |
| 指導教授: |
鍾雲吉
Yun-Chi Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 三維儲槽 、顆粒物質 、置入物 、離散元素模擬 、傳輸性質 、內部性質 |
| 外文關鍵詞: | 3D silo, granular materials, insert, discrete element modelling, transport property, internal physical property |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用離散元素法(Discrete Element Method, DEM)模擬顆粒體在六種置入物儲槽中循環排放時的流動與力學行為,此六種置入物分別為無置入物,倒圓錐型,圓片型,圓錐中空型,圓柱中空型,及儲槽中空型置入物,並提出切片法模型模擬顆粒體在儲槽中的流動行為,進一步分析置入物對儲槽中顆粒流傳輸性質與內部性質的影響,研究結果顯示:(1) 倒圓錐型、圓片型與圓錐中空型三種置入物儲槽顆粒體的垂直速度與徑向速度差異較小且較為均勻分佈,粒子溫度呈現更均勻分佈,滯留時間較為集中,質量流率皆較低,有助於改善儲槽中顆粒體的流動行為;(2) 六種置入物儲槽的粒子體積佔有率峰值皆約為0.62,在靠近儲槽邊壁或置入物邊壁區域的粒子體積佔有率較小,此外靠近中心處呈現更小的粒子體積佔有率;(3) 當六種置入物儲槽顆粒流態由均勻穩定轉換成不均勻時,呈現極大的正向應力。垂直應力分佈中可以發現由接觸力產生的架橋效應,倒圓錐型與圓片型置入物儲槽造成正向應力三個分量的峰值提高且範圍更廣,而儲槽中空型置入物儲槽在正向應力三個分量皆呈現最大值;(4) 六種置入物儲槽的Von Mises應力分佈與垂直應力分佈最為接近,這說明儲槽不論是否安裝置入物,儲槽內部應力的傳遞主要由垂直應力控制;(5)六種置入物儲槽中在傾斜邊壁與置入物上方區域受阻擋作用影響,均導致不均勻與不穩定顆粒流進而引起較強烈的異向性,以致應力比大於1.0,甚至高達2.4。
The purpose of this study is to investigate the flow and mechanical behavior of granular materials in cylindrical silos with six different inserts by using Discrete Element Method (DEM). These inserts include conical insert, disk insert, BINSERT, hollow cylinder insert and hollow silo insert. To substantially reduce computer time, a slice method is proposed to simulate the flow behavior of granular materials in the silo. Furthermore, the effect of insert geometry on transport properties and internal physical properties of the granular flow in the silo is analyzed. Key findings are highlighted as follow: (1) In the silos with conical insert, disk insert, and BINSERT, the granular flow exhibits more uniform vertical and radial velocity profiles. The granular temperature is evenly distributed, and the residence time is also relatively concentrated, the mass flow rate shows smaller values. (2) The peak value of solid fraction in the silos with six kinds of insert is approximately 0.62. The solid fraction shows smaller values near the silo walls and inserts. Furthermore, the solid fraction near the center shows the smallest values. (3) When the granular flow is transformed from stability to non-uniform, the granular assembly experiences a great normal stress. The spatial distribution of vertical stress demonstrates the arching phenomena caused by the contact force. The peak values of normal stress increase and its spatial distribution becomes wider in the silo with conical insert and disk insert. However, the normal stress for the silo with hollow silo insert shows large values. (4) Von Mises stress distribution in the silos shows very similar pattern to the vertical stress. This indicates that the stress state in the silos is dominated by the vertical stress. (5) The granular flow in the silos subject to obstruction is uneven and unstable and shows strong anisotropy, resulting in a stress ratio greater than 1.0, even up to 2.4.
[1] 朱敬平, 化學迴圈燃燒技術發展概況簡介, 中興工程, (2011) 63-72.
[2] A.W. Jenike, Storage and flow of solids, Bulletin No. 123, The University of Utah, (1964).
[3] A.W. Jenike, Gravity Flow of Bulk Solids Bulletin No. 108, The University of Utah, (1961).
[4] U. Tüzün, R. Nedderman, An investigation of the flow boundary during steady-state discharge from a funnel-flow bunker, Powder Technol., 31 (1982) 27-43.
[5] B.H. Pittenger, H. Purutyan, R. Barnum, Reducing/eliminating segregation problems in powdered metal processing. ii. methods of controlling segregation, P/M Science & Technology Briefs, 2 (2000) 10-13.
[6] J.W. Carson, Preventing particle segregation: a review of the primary causes and some practical solutions can help, Chem. Eng., 111 (2004) 29-32.
[7] P. Tang, V. Puri, Methods for minimizing segregation: a review, Part. Sci. Technol., 22 (2004) 321-337.
[8] M. Ostendorf, J. Schwedes, Application of particle image velocimetry for velocity measurements during silo discharge, Powder Technol., 158 (2005) 69-75.
[9] S. Albaraki, S.J. Antony, How does internal angle of hoppers affect granular flow? Experimental studies using digital particle image velocimetry, Powder Technol., 268 (2014) 253-260.
[10] P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies, geotechnique, 29 (1979) 47-65.
[11] H. Zhu, A. Yu, Steady-state granular flow in a 3D cylindrical hopper with flat bottom: macroscopic analysis, Granul. Matter, 7 (2005) 97-107.
[12] Y. Yu, H. Saxén, Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres, Adv. Powder Technol., 22 (2011) 324-331.
[13] V. Vidyapati, S. Subramaniam, Granular flow in silo discharge: discrete element method simulations and model assessment, Ind. Eng. Chem. Res., 52 (2013) 13171-13182.
[14] C.H. Rycroft, G.S. Grest, J.W. Landry, M.Z. Bazant, Analysis of granular flow in a pebble-bed nuclear reactor, Phys. Rev. E, 74 (2006) 021306.
[15] R. Balevičius, R. Kačianauskas, Z. Mroz, I. Sielamowicz, Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes, Adv. Powder Technol., 22 (2011) 226-235.
[16] C. González-Montellano, A. Ramirez, E. Gallego, F. Ayuga, Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos, Chem. Eng. Sci., 66 (2011) 5116-5126.
[17] H. Tao, B. Jin, W. Zhong, X. Wang, B. Ren, Y. Zhang, R. Xiao, Discrete element method modeling of non-spherical granular flow in rectangular hopper, Chem. Eng. Process., 49 (2010) 151-158.
[18] M. Madrid, K. Asencio, D. Maza, Silo discharge of binary granular mixtures, Phys. Rev. E, 96 (2017) 022904.
[19] H. Zhu, A. Yu, Steady-state granular flow in a three-dimensional cylindrical hopper with flat bottom: microscopic analysis, J. Phys. D Appl. Phys., 37 (2004) 1497.
[20] R. Kobyłka, J. Horabik, M. Molenda, Numerical simulation of the dynamic response due to discharge initiation of the grain silo, Int. J. Solids Streuct., 106 (2017) 27-37.
[21] T. Weinhart, C. Labra, S. Luding, J.Y. Ooi, Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow, Powder Technol., 293 (2016) 138-148.
[22] R. Balevičius, I. Sielamowicz, Z. Mróz, R. Kačianauskas, Effect of rolling friction on wall pressure, discharge velocity and outflow of granular material from a flat-bottomed bin, Particuology, 10 (2012) 672-682.
[23] C. González-Montellano, E. Gallego, Á. Ramírez-Gómez, F. Ayuga, Three dimensional discrete element models for simulating the filling and emptying of silos: analysis of numerical results, Comput. Chem. Eng., 40 (2012) 22-32.
[24] Q. Zheng, A. Yu, Finite element investigation of the flow and stress patterns in conical hopper during discharge, Chem. Eng. Sci., 129 (2015) 49-57.
[25] A. Couto, A. Ruiz, P. Aguado, Experimental study of the pressures exerted by wheat stored in slender cylindrical silos, varying the flow rate of material during discharge. Comparison with Eurocode 1 part 4, Powder Technol., 237 (2013) 450-467.
[26] S. Hsiau, J. Smid, C. Wang, J. Kuo, C. Chou, Velocity profiles of granules in moving bed filters, Chem. Eng. Sci., 54 (1999) 293-301.
[27] J. Haertl, J.Y. Ooi, J. Rotter, M. Wójcik, S. Ding, G.G. Enstad, The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo, Chem. Eng. Res. Des., 86 (2008) 370-378.
[28] M. Wójcik, J. Tejchman, G.G. Enstad, Confined granular flow in silos with inserts—Full-scale experiments, Powder Technol., 222 (2012) 15-36.
[29] M. Wójcik, J. Härtl, J.Y. Ooi, M. Rotter, S. Ding, G.G. Enstad, Experimental Investigation of the Flow Pattern and Wall Pressure Distribution in a Silo with a Double‐Cone Insert, Part. Part. Syst. Char., 24 (2007) 296-303.
[30] H. Hammadeh, F. Askifi, A. Ubysz, M. Maj, A. Zeno, Effect of using insert on the flow pressure in cylindrical silo, Studia Geotech. et Mech., 41 (2019) 177-183.
[31] S. Ding, A. Dyrøy, M. Karlsen, G. Enstad, M. Jecmenica, Experimental investigation of load exerted on a double-cone insert and effect of the insert on pressure along walls of a large-scale axisymmetrical silo, Part. Sci. Technol., 29 (2011) 127-138.
[32] S.C. Yang, S.S. Hsiau, The simulation and experimental study of granular materials discharged from a silo with the placement of inserts, Powder Technol., 120 (2001) 244-255.
[33] S. Ding, H. Li, J. Ooi, J. Rotter, Prediction of flow patterns during silo discharges using a finite element approach and its preliminary experimental verification, Particuology, 18 (2015) 42-49.
[34] J. Wu, J. Binbo, J. Chen, Y. Yang, Multi-scale study of particle flow in silos, Adv. Powder Technol., 20 (2009) 62-73.
[35] R. Kobyłka, M. Molenda, DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction, Powder Technol., 256 (2014) 210-216.
[36] R. Kobyłka, M. Molenda, J. Horabik, Loads on grain silo insert discs, cones, and cylinders: Experiment and DEM analysis, Powder Technol., 343 (2019) 521-532.
[37] J. Meriam, L. Kraige, Engineering Mechanics-Dinamics, John Wiley & Sons, New York, 2008.
[38] Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol., 71 (1992) 239-250.
[39] C. Thornton, C. Randall, Applications of theoretical contact mechanics to solid particle system simulation, J. Appl. Mech., 20 (1988) 133-142.
[40] D. Zhang, W. Whiten, The calculation of contact forces between particles using spring and damping models, Powder Technol., 88 (1996) 59-64.
[41] C. O'Sullivan, J.D. Bray, Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Eng. Comput., 21 (2004) 278-303.
[42] D.O. Potyondy, P.A. Cundall, A bonded-particle model for rock, Int. J. Rock Mech. Min., 41 (2004) 1329-1364.
[43] J. Choi, A. Kudrolli, M.Z. Bazant, Velocity profile of granular flows inside silos and hoppers, J. Phys.: Condens. Matter, 17 (2005) S2533-S2548.
[44] A. Ramírez, J. Nielsen, F. Ayuga, Pressure measurements in steel silos with eccentric hoppers, Powder Technol., 201 (2010) 7-20.
[45] M. Martinez, I. Alfaro, M. Doblare, Simulation of axisymmetric discharging in metallic silos. Analysis of the induced pressure distribution and comparison with different standards, Eng. Struct., 24 (2002) 1561-1574.
[46] Y. Wang, Y. Lu, J.Y. Ooi, Finite element modelling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian–Eulerian formulation, Powder Technol., 257 (2014) 181-190.
[47] C. Campbell, C. Brennen, Chute flows of granular material: some computer simulations, J. Appl. Mech. 52 (1985) 172-178.
[48] J. Wan, F. Wang, G. Yang, S. Zhang, M. Wang, P. Lin, L. Yang, The influence of orifice shape on the flow rate: A DEM and experimental research in 3D hopper granular flows, Powder Technol., 335 (2018) 147-155.
[49] Q. Zheng, B. Xia, R. Pan, A. Yu, Piping flow of cohesive granular materials in silo modelled by finite element method, Granul. Matter, 19 (2017) 2.
[50] S. Masson, J. Martinez, Effect of particle mechanical properties on silo flow and stresses from distinct element simulations, Powder Technol., 109 (2000) 164-178.
[51] S. Liu, Z. Zhou, R. Zou, D. Pinson, A. Yu, Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper, Powder Technol., 253 (2014) 70-79.
[52] Y. Chung, C. Lin, J. Ai, Mechanical behaviour of a granular solid and its contacting deformable structure under uni-axial compression-Part II: Multi-scale exploration of internal physical properties, Chem. Eng. Sci., 144 (2016) 421-443.
[53] J. Gray, M. Wieland, K. Hutter, Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc. Lond. A, 455 (1999) 1841-1874.
[54] Y. Tai, J. Gray, K. Hutter, S. Noelle, Flow of dense avalanches past obstructions, Ann. Glaciol., 32 (2001) 281-284.
[55] J. Gray, Y.-C. Tai, S. Noelle, Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, J. Fluid Mech., 491 (2003) 161-181.
[56] L.E. Silbert, D. Ertaş, G.S. Grest, T.C. Halsey, D. Levine, S.J. Plimpton, Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E, 64 (2001) 051302.
[57] T. Faug, Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines, Phys. Rev. E, 92 (2015) 062310.
[58] Y. Chung, C. Wu, C. Kuo, S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Appl. Math. Model., 74 (2019) 540-568.
[59] T. Weinhart, R. Hartkamp, A.R. Thornton, S. Luding, Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface, Phys. Fluids, 25 (2013) 070605.
[60] L.S. Fan, Chemical looping systems for fossil energy conversions, John Wiley & Sons, Ltd, 2011