跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳佳愔
Chia-Yin Chen
論文名稱: 高功率脈衝磁控濺鍍遠紅外線抗反射膜之研究
Research on the Anti-reflection Coating for the Far-infrared Applications by High-Power Impulse Magnetron Sputtering Method
指導教授: 陳昇暉
Sheng-Hui Chen
曹昭陽
Chao-Yang Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 紅外線抗反射膜熱影像熱輻射氧化鋅高功率脈衝磁控濺鍍
外文關鍵詞: Infrared, Anti-reflective film, Thermal image, Thermal radiation, Zinc oxide (ZnO), Silicon (Si), HiPIMS
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用紅外線熱影像量測太陽能電池已成為太陽能電池研究重點之一,尤其在歐洲已經逐漸成為電站驗收與維運的標準測試項目。本研究目標在製作遠紅外線抗反射光窗輔助熱影像儀檢測太陽能電池。重點在於利用高純度的矽晶圓當作光窗基板,並鍍上高低折射率堆疊的紅外線光學膜;高純度的矽晶圓在紅外線波段的光學穿透率高,且成本較鍺晶圓低,適合當作新一代的紅外線光窗材料。此外,配合高低折射率的抗反射光學膜可增加矽晶圓的紅外線穿透率。傳統使用的遠紅外線光學膜材料大多有毒性或放射性,因此本研究使用非毒性與非放射性氧化鋅搭配純矽當作低與高折射率材料,並使用高能磁控濺鍍系統,將氧化鋅薄膜及矽薄膜維持在固定的折射率,穩定製程。最後透過柯西公式以及多層膜的堆疊設計達到抗反射的效果。抗反射膜的樣品在7-9 um的平均穿透率高達86.83 %,位於7.98 um 波長有最高的穿透率93.10 %。


    As demand increases the far-infrared thermal image sensor with the anti-reflection coating is one of the hot topics of the standard testing for solar cells. In this research a high purity silicon wafer was applied to be the substrate of the far-infrared window with an anti-reflective coating. The high purity silicon wafer is a high optical-transmittance material in the infrared range like Germanium but with lower price. Besides, when the far-infrared window was deposited high and low refractive index optical thin films as the anti-reflection coating, the transmittance of infrared range can be improved. Most of the materials used for the far-infrared optical films are toxic or radioactive. In this study, non-toxic and non-radioactive zinc oxide and pure silicon thin films were used as the low and high refractive index materials. The high-power impulse magnetron sputtering system was used to fabricate zinc oxide and silicon thin films with stable refractive indices. Finally, the anti-reflective coating was achieved by applying the Cauchy formula and the multilayer design. The average transmittance of the anti-reflective sample is 86.83 % at wavelength 7-9 um. And the maximum transmittance is 93.10 % at 7.98 um.

    目錄 摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1-1 前言 1 1-2 實驗動機 3 第二章 基本理論 7 2-1 氧化鋅(ZnO)的材料特性與應用 7 2-2 矽(Si)的材料特性 9 2-3 薄膜製程的原理與機制 12 2-3.1 濺射原理 14 2-3.2 輝光放電 14 2-3.3 磁控濺鍍系統 15 2-4 高能脈衝磁控濺鍍系統 15 2-5 反應式磁控濺鍍 17 2-6 光學多層膜設計理論 17 第三章 實驗流程與儀器架構 20 3-1 實驗流程 20 3-2 鍍膜實驗設備 22 3-3 量測儀器 23 3-3.1 U-4100落地型紫外可視近紅外光譜儀 23 3-3.2 FTIR傅立葉轉換紅外光譜儀 24 3-3.3 SEM掃描式電子顯微鏡 26 第四章 實驗結果與討論 28 4-1 氧氣(O2)流量對ZnO薄膜的影響 29 4-2 功率對ZnO薄膜的影響 34 4-3 儲能時間對ZnO薄膜的影響 38 4-4 功率對Si薄膜的影響 42 4-5 儲能時間對Si薄膜的影響 45 4-6 多層膜 49 第五章 結論 55 參考文獻 56

    參考文獻
    [01]Yves Roggo, et al., “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies”, Journal of Pharmaceutical and Biomedical Analysis, vol. 44, no. 3, pp. 683-700, Jul. 2007
    [02]Amanda W. Lewis, Sam T.S. Yuen, Alan J.R. Smith, “Detection of gas leakage from landfills using infrared thermography – applicability and limitations”, Waste Management & Research, vol. 21, no. 5, pp. 436-447, Oct. 2003
    [03]Seong G. Kong, et al., “Recent advances in visual and infrared face recognition—a review”, Computer Vision and Image Understanding, vol. 97, no. 1, pp. 103-135, Jan. 2005
    [04]金井升等編著,「單晶硅太陽電池的溫度和光強特性」,材料研究與應用(季刊),第2卷,第4期,993-105頁,2008年12月。
    [05]蕭德仁,「提升太陽能電池發電效率參數與機構之研究」,正修科技大學,碩士論文,民國94年。
    [06]Edmund Optics Inc, The Correct Material for Infrared (IR) Applications (https://www.edmundoptics.com/resources/application-notes/optics/the-correct-material-for-infrared-applications/)
    [07]太陽能五四三,「太陽能電站IR熱影像空拍」
    (http://solar543.blogspot.com/2017/03/irinspection.html)
    [08]Smith, A.L., The Coblentz Society Desk Book of Infrared Spectra in Carver, C.D., editor, The Coblentz Society Desk Book of Infrared Spectra, Second Edition, The Coblentz Society:Kirkwood, MO, 1982, pp 1-24.
    [09]M. Vaseem, A. Umar, Y. Hahn, “ZnO Nanoparticles: Growth, Properties, and Applications”, Metal Oxide Nanostructures and Their Applications, vol. 5, pp. 1-36, 1988.
    [10]C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications, 1st ed. Elsevier Science, Ang. 2006
    [11]Win Maw Hlaing Oo, “Infrared Spectroscopy of Zinc Oxide and Magnesium nanostructures”, Washington State University, Dec. 2007
    [12]Zinc oxide (https://en.wikipedia.org/wiki/Zinc_oxide)
    [13]List of Periodic Table Elements Sorted by: Abundance in Earth's crust
    (https://www.science.co.il/elements/?s=Earth#Notes)
    [14]Nam H Nguyen, 探索中國傳統的太陽系內外: Exploring the Solar System and Beyond In Mandarin Chinese, Feb. 2018
    [15]Silicon(https://en.wikipedia.org/wiki/Silicon)
    [16]Neil W. Ashcroft and N. David Mermin, Solid State Physics, Harcourt: Orlando, 1976, Chapter 4.
    [17]PV education.org, General Properties of Silicon
    (https://www.pveducation.org/pvcdrom/materials/general-properties-of-silicon)
    [18]Hugh O. Pierson, Handbook of chemical vapor deposition: principles, technology and applications, William Andrew, 1999
    [19]泓威科技,「真空蒸鍍設備」蒸鍍設備示意圖
    (http://www.hwtc.com.tw/product.html)
    [20]國立成功大學微奈米科技研究中心,電子束蒸鍍機
    (http://cmnst.ncku.edu.tw/p/405-1006-159877,c17606.php?Lang=zh-tw)
    [21]彭偉倫,「氧化銦錫透明電極應用於氮化鎵發光二極體」,國立交通大學,碩士論文,民國93年。
    [22]孫惟哲,「含氫之氧化鋅鋁透明導電膜的熱穩定性研究」,國立中央大學,碩士論文,民國100年。
    [23]Arutiun P. Ehiasarian, High-power impulse magnetron sputtering andits applications, Pure and Applied Chemistry, vol. 82, no. 6, pp.1247-1258, 2010
    [24]梁軒,「反應性濺鍍釓掺雜之氧化鈰薄膜及材料性質分析」,國立台灣科技大學,碩士論文,民國96年。
    [25]李正中,薄膜光學,藝軒,第八版,2016
    [26]FT-IR vs. Dispersive Infrared, Theory on Infrared Spectroscopy Instrumentation, Thermo Nicolet Application Note, TN-00128. http://www.thermo.com.cn/Resources/200802/productPDF_21615.pdf
    [27]台灣島津科學儀器股份有限公司,IRAffinity-1S
    (http://www.shimadzu.com.tw/products/affinity/iraf_4.html)
    [28]Sang Youn Oh, et al., “Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy”, Carbohydrate Research, vol. 340, no. 15, Oct. 2005, pp. 2376-2391
    [29]Brian C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd ed., 2011
    [30]羅聖全,「科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)」,科學研習,No. 52-5,2013年五月
    [31]魏中聖,蕭俊卿,沈弘俊,「射頻濺鍍功率對氧化鋅薄膜機械性質之影響」,真空科技,二十卷第一期,15-21頁
    [32]S. Konstantinidis, A. Hemberg, J. P. Dauchot, and M. Hecq, “Deposition of zinc oxide layers by high-power impulse magnetron sputtering”, Journal of Vacuum Science & Technology B, 25(3), May/Jun 2007, pp.L19-21
    [33]宋文龍,鄧建新,趙金龍,磁控濺鍍薄膜附著性能的影響因素,中國科技論文在線,http://www.sciens-cn.com/upload/news/磁控溅射薄膜附着性能的影响因素.pdf
    [34]Y.M. Lu, et al., “Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering”, Materials Chemistry and Physics, vol. 72, no. 2, 1 November 2001, pp. 269-272
    [35]D. Tabor, The Hardness of Metals, 1st ed, Oxford University Press, 1951
    [36]Bharat Bhushan, and Vilas N. Koinkar, “Nanoindentation hardness measurements using atomic force microscopy”, Applied Physics Letters, vol. 64, no.13, 1994, pp. 1653-1655
    [37]W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book, 8th Edition, chptr. 23

    QR CODE
    :::