| 研究生: |
黃可登 Ke-Deng Huang |
|---|---|
| 論文名稱: |
應用於毫米波偵測器與通訊之互補式金氧半高頻接收器之設計 Design of CMOS High-Frequency Receiver for Millimeter-Wave Detector and Communication |
| 指導教授: | 傅家相 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 接收器 |
| 外文關鍵詞: | Receiver |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文主要設計一主被動整合接收器,應用於Ka-Band短距離脈衝雷達的接受器部分,總共完成了四個電路,第一顆提出一個利用90 nm CMOS製程之低成本之35-GHz功率偵測器電路,裡面包含了35-GHz 低雜訊放大器、35-GHz 偵測器兩大電路。在低電壓、低功率的要求下,量測後能提供300K等級的Responsivity且在1 Gb/s調變訊號下有50%以上的Duty cycle,雜訊等效功率也有12.6 fW/√Hz,並且在後續計畫的要求下,我們提出第二顆電路在低雜訊放大器前加入切換器,並且在偵測器後方加入五級中頻放大器,最終接收機輸出端在1GHz的調變下有6 GV/W 的電壓響應度 且雜訊等效功率低於3.5 aw/√Hz。
接下來在第三顆提出一個低成本之35-GHz主被動整合接收器,利用90 nm CMOS製程,電路架構包含了35-GHz三級的低雜訊放大器、雙平衡吉伯特混頻器、差動放大器、偵測器等電路,其電壓響應度達到1.2 MV/W,雜訊等效功率也有12 fW/√Hz,轉換增益有34.4 dB,雙邊帶雜訊指數為7.6 dB。接下來的電路為了在低輸入能量,卻需偵測到約0 dBm得訊號要求下,提出第四顆電路,在電路最前端加入Switch量測隔離度和輸入損耗以方便日後須整合TX的需求,在低雜訊放大器部分加入一級疊接放大器,之後加入差動放大器,使得電路分為兩路:一路為偵測器與中頻放大器,一路為混頻器,整體的結果有達到1Gb/s調變訊號下有50%以上的Duty cycle,且Vpp可達到約1 V,並且在輸出100 MHz 的中頻訊號可達到45 dB 的轉換增益與雙邊頻帶雜訊7.6 dB,在偏壓1.2 V 情況下只有45.8 mW之功耗。
此論文主要設計一主被動整合接收器,應用於Ka-Band短距離脈衝雷達的接受器部分,總共完成了四個電路,第一顆提出一個利用90 nm CMOS製程之低成本之35-GHz功率偵測器電路,裡面包含了35-GHz 低雜訊放大器、35-GHz 偵測器兩大電路。在低電壓、低功率的要求下,量測後能提供300K等級的Responsivity且在1 Gb/s調變訊號下有50%以上的Duty cycle,雜訊等效功率也有12.6 fW/√Hz,並且在後續計畫的要求下,我們提出第二顆電路在低雜訊放大器前加入切換器,並且在偵測器後方加入五級中頻放大器,最終接收機輸出端在1GHz的調變下有6 GV/W 的電壓響應度 且雜訊等效功率低於3.5 aw/√Hz。
接下來在第三顆提出一個低成本之35-GHz主被動整合接收器,利用90 nm CMOS製程,電路架構包含了35-GHz三級的低雜訊放大器、雙平衡吉伯特混頻器、差動放大器、偵測器等電路,其電壓響應度達到1.2 MV/W,雜訊等效功率也有12 fW/√Hz,轉換增益有34.4 dB,雙邊帶雜訊指數為7.6 dB。接下來的電路為了在低輸入能量,卻需偵測到約0 dBm得訊號要求下,提出第四顆電路,在電路最前端加入Switch量測隔離度和輸入損耗以方便日後須整合TX的需求,在低雜訊放大器部分加入一級疊接放大器,之後加入差動放大器,使得電路分為兩路:一路為偵測器與中頻放大器,一路為混頻器,整體的結果有達到1Gb/s調變訊號下有50%以上的Duty cycle,且Vpp可達到約1 V,並且在輸出100 MHz 的中頻訊號可達到45 dB 的轉換增益與雙邊頻帶雜訊7.6 dB,在偏壓1.2 V 情況下只有45.8 mW之功耗。
[1] T. Tsukizawa et al., "A fully integrated 60GHz CMOS transceiver chipset based on WiGig/IEEE802.11ad with built-in self calibration for mobile applications", IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), pp. 230-231, Feb. 2013.
[2] T. S. Rappaport et al., "Millimeter wave mobile communications for 5G cellular: It will work!",IEEE Access, vol. 1, pp. 335-349, May 2013.
[3] P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave. Theory Technology., vol. 50, no. 3,pp. 910-928, Mar. 2002.
[4] P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw.Theory Techn., vol. 52, no. 10, pp. 2438-2447, Oct. 2004.
[5] M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol. 1, pp. 97-105,Feb. 2007.
[6] H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEETrans. THz Sci. Technol., vol. 1, no. 1, pp. 256-263, Sep. 2011.
[7] P.-J. Peng, et al., “A 94-GHz 3D imager radar engine with 4TX/4RX beamforming scan technique in 65nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 656-668, Mar. 2015.
[8]B.-H. Ku, et al., “A 77-81-GHz 16-element phased-array receiver with +-50° beam scanning foradvanced automotive radars,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 11, pp. 2823–2832, Nov.2014.
[9]L. Aluigi, D. Pepe, and D. Zito, “K-band SiGe dual-input LNA and detector for SoC radiometers for remote sensing of atmosphere,” in Proc. IEEE ICECS, Monte Carlo, Monaco, Dec. 2016, pp. 332–335.
[10]L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band SiGe direct-detection-basedpassive imaging receiver,” IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2240-2252, Oct. 2011.
[11] L. Zhou et al., “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J.Solid-State Circuits, vol. 46, no. 2, pp. 378-391, Feb. 2011.
[12] C.-L. Ko, C.-H. Li, C.-N. Kuo, M.-C. Kuo, D.-C. Chang, "A 8-mW 77-GHz band CMOS LNA by using reduced simultaneous noise and impedance matching technique", Proc. IEEE Int. Symp. Circuits Syst., pp. 2988-2991, May 2015
[13] J.-H. Tsai, W.-C. Chen, T.-P. Wang, T.-W. Huang, H. Wang, " A miniature Q -band low noise amplifier using 0.13-CMOS technology ", IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 327-329, Jun. 2006.
[14]H.-C. Yeh, Z.-Y. Liao, H. Wang, "Analysis and design of millimeter-wave low-power CMOS LNA with transformer-multicascode topology", IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3441-3454, Dec. 2011.
[15] C. Geha, C. Nguyen, J. Silva-Martinez, " A wideband low-power-consumption 22-32.5-GHz 0.18- \$mu\$ m BiCMOS active balun-LNA with IM2 cancellation using a transformer-coupled cascode-cascade topology ", IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 536-547, Feb. 2017.
[16] R. Garg, A. S. Natarajan, "A 28-GHz low-power phased-array receiver front-end with 360° RTPS phase shift range", IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4703-4714, Jun. 2017.
[17] L. Aluigi, D. Pepe, D. Zito, "K-band SiGe dual-input LNA and detector for SoC radiometers for remote sensing of atmosphere", Proc. IEEE ICECS Monte Carlo Monaco, pp. 332-335, Dec. 2016.
[18] L. Aluigi, F. Alimenti, P. Gallagher, D. Zito, "Impact of switching on design of Ka-band SoC Dicke radiometer for space detection of solar flares", Proc. ISSC, pp. 1-4, Jun. 2015.
[19] L. Aluigi, D. Pepe, F. Alimenti, D. Zito, "K-band SiGe system-on-chip radiometric receiver for remote sensing of the atmosphere", IEEE Transaction on Circuit and Systems-I: Regular Paper, vol. 64, no. 12, pp. 3025-3035, Dec. 2017.
[20]Sarkas et al., "Silicon-Based radar and imaging sensors operation above 120 GHz, "IEEE MIKON , May. 2012.
[21]C. Liu et al., "A Ka-band single-chip SiGe BiCMOS phased-array transmit/receive front-end", IEEE Trans. Microw. Theory Techn., vol. 64, no. 11, pp. 3667-3677, Nov. 2016.
[22] Z. Li, J.Cao, Q. Li, Z. Wang,” A Wideband Ka-band Receiver Front-End in 90-nm CMOS Technology”, Microwave Integrated Circuits Conference (EuMIC), Dec. 2013
[23] F. Aflatouni, H. Hashemi, "A low power Ka-band receiver front-end in 0.13-µm SiGe BiCMOS for space transponders", Proc. Compound Semiconductor Integr. Circuit Symp., pp. 1-4, Oct. 11-14, 2009.
[24] A. Parsa, B. Razavi, "A 60 GHz CMOS receiver using a 30 GHz LO", IEEE ISSCC Dig. Tech. Papers, pp. 190-191, Feb. 2008