跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林學汕
Syue-Shan Lin
論文名稱: 以非週期性晶疇極化反轉鈮酸鋰作為電光可調腔內泵浦多波長光參量振盪器之研究
Electro-optic spectrum tuning in multiline intracavity optical parametric oscillators using aperiodically poled lithium niobate
指導教授: 陳彥宏
Yen-Hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 90
中文關鍵詞: 鈮酸鋰電光效應光參量振盪器
外文關鍵詞: lithium niobate, Electro-Optic Effect, Optical Parametric Oscillator
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用基因演算法設計一非週期晶籌極化反轉鈮酸鋰結構,結構中包含多個光參量產生器機制與非對稱正負晶籌長度比設計,用來產生多個通訊波段的雷射訊號,且藉由電光調制的方式對光參量振盪器之輸出訊號光進行電光波長調制。有別於以往使用模擬退火法的方式來優化AOS結構,基因演算法優化之NOS結構因無同長度區塊的限定,所以自由度較大,所優化的結構在轉換效率、光譜保真度與製程容忍度都有較好的表現。
    實際製程晶片並量測後,本設計在光參量振盪器訊號光的電光波長調制率於晶片溫度120℃時有最佳值0.7325nm/𝑘𝑉⁄𝑚𝑚,且在設計之相位匹配溫度40℃上升到100℃後都有良好的輸出訊號光相對功率比,也成功改善了光譜保真度低的問題。
    未來可進一步修改晶體設計,改善電光調制範圍不廣的缺點,並改以環型共振腔的方式共振輸出訊號光,進一步窄化訊號光頻寬,達成快、精確與穩定的可調式窄頻寬雷射源,於在光通訊系統、訊號處理與積體光學等領域中有不容小看的競爭力。


    In this study, we have developed a genetic algorithm to calculate a nonperiodic optical superlattice (NOS) structure in LiNbO3 crystal for achieving EO spectrum tuning in multiline intracavity optical parametric oscillators (IOPOs) in telecom C band region. The NOS structure is quasi-phase-matched to perform 1064-nm pumped multiple optical parametric down conversion processes with an engineered certain asymmetric domain length ratio for achieving a desired EO spectrum tuning. The major advantage of an NOS structure calculated by genetic algorithm over the aperiodic optical superlattice (AOS) structure calculated by simulated annealing method that has been adopted in our previous studies is its larger degree of design freedom without suffering from the limitation of setting a unit domain block for building an AOS structure. Besides, the NOS structure has better performance in conversion efficiency, spectral shape fidelity, and fabrication tolerance.
    When the fabricated NOS LiNbO3 chip (with an asymmetric domain length ratio of ~0.434) is operated in a 1064-nm pumped dual signal-line (1540 and 1550 nm at 40oC) IOPO, we successfully achieve a highest spectral tuning rate of 0.7325 nm/(kV/mm) in the system at a temperature of 120℃ with much improved spectral-shape fidelity during tuning.
    In the experiment, we encountered a measurement problem of power decay with time during the application of a high tuning electric field (>500 V/mm) along the z-axis of the NOS LiNbO3 crystal, the origin is not yet known. The use of a cw OPO is desirable for reducing the problem as well as for having highly narrowed OPO lines.
    This novel EO spectrum tunable dual-line IOPO system can be of great potential in many applications such as optical communications, signal processing, THz generation, and integrated optics.

    第一章 緒論 ............................................. 1 1.1 前言 ............................................... 1 1.2 鈮酸鋰晶體 .......................................... 2 1.3 文獻簡介 ............................................ 6 1.4 研究動機 ............................................ 8 1.5 內容概要 ........................................... 10 第二章 理論 ............................................ 11 2.1 相位匹配 ........................................... 11 2.2 準相位匹配(Quasi-phase matching, QPM) .............. 13 2.3 光參量振盪器 ....................................... 16 2.4 電光效應 ........................................... 19 2.5 電光調制光參量振盪器 ............................... 21 2.6 共振腔品質係數調制(Q-switch) ....................... 24 第三章 模擬方法與結果 .................................. 28 3.1 基因演算法 ......................................... 28 3.1.1 產生初始族群(population) ......................... 29 3.1.2 編碼 ............................................ 29 3.1.3 選擇(selection) ................................. 29 3.1.4 交配(crossover) ................................. 32 3.1.5 突變(mutation) .................................. 34 3.1.6 子代替代母代成為新世代(reinsertion) .............. 35 3.1.7 遷移(migration) ................................. 35 3.2 Nonperiodic Optical Superlattice .................. 37 3.3 模擬結果 .......................................... 39 3.3.1 基因演算法程式之試證 ............................. 39 3.3.2 非對稱正負晶籌長度比之非週期鈮酸鋰光參量產生器之設計 42 第四章 晶片製程 ........................................ 47 4.1 黃光微影製程 ....................................... 47 4.2 極化反轉製程 ....................................... 48 4.3 電極製程與拋光 ..................................... 51 第五章 實驗量測與結果分析 ............................... 52 5.1 量測系統 ........................................... 52 5.2 溫度對光參量振盪器波長之調制 ........................ 53 5.3 電光調制光參量振盪器量測 ............................ 56 5.3.1 量測問題 ......................................... 56 5.3.2 量測結果 ......................................... 57 5.3.3 溫度對電光調制光參量振盪器的影響 .................. 60 5.4 雷射脈衝寬度與尖峰功率之量測 ........................ 65 5.5 實驗結果分析 ....................................... 68 第六章 結論與未來展望 .................................. 69 6-1 結論 .............................................. 69 6-2 未來展望............................................ 69 參考文獻 ............................................... 72

    第一章 緒論
    [1.1] A. Einstein, “Zur quantentheorie der strahlung.”, Phys. Z., Vol 18, pp. 121-128, 1917.
    [1.2] T. H. Maiman, “Stimulated optical radiation in ruby”, 1960
    [1.3] E. P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics.”, Physical Review Letters, Vol.7, No.4, p. 118, 1961
    [1.4] S. E. Miller, “Integrated optics: An introduction.”, The Bell System Technical Journal, Vol.48, No.7, pp. 2059-2069, 1969
    [1.5] G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance”, Stanford university, Doctoral dissertation, 1998
    [1.6] W. H. Zachariasen, Skr. Norske Vid-Ada., Oslo, Mat. Naturv., No.4, 1928
    [1.7] P. Lerner, C. Legras, and J. P. Duman, “Stoechiométrie des Monocristaux de Métaniobate de Lithium.”, Journal of Crystal Growth, pp. 3-4, 1968
    [1.8] 徐寧,「雙週期性晶格極化反轉鈮酸鋰電光模態轉換器調制之體積全像光參量振盪器之頻譜窄化機制探討」,國立中央大學,碩士論文,2012
    [1.9] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate.”, Optics letters, Vol.22, No.20, pp. 1553-1555, 1997
    [1.10] A. Yariv, and P. Yeh, “Optical waves in crystals (Vol. 5).”, New York, Wiley, 1984
    [1.11] J. A. Giordmaine, and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies.”, Physical Review Letters, Vol.14, No.24, p. 973, 1965
    [1.12] J. Raffy, T. Debuisschert, and J. P. Pocholle, “Widely tunable optical parametric oscillator with electrical wavelength control.”, Optics letters, Vol.22, No.21, pp. 1589-1591, 1997
    [1.13] C. S. Yu, and A. H. Kung, “Grazing-incidence periodically poled LiNbO3 optical parametric oscillator.”, JOSA B, Vol.16, No.12, pp. 2233-2238, 1999
    [1.14] L. B. Kreuzer, “RUBY‐LASER‐PUMPED OPTICAL PARAMETRIC OSCILLATOR WITH ELECTRO‐OPTIC EFFECT TUNING.”, Applied Physics Letters, Vol.10, No.12, pp. 336-338, 1967
    [1.15] Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by
    electro-optic effect.”, Applied physics letters, Vol.74, No.1, pp. 123-125, 1999
    [1.16] 呂學聰,「以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器」,國立中央大學,碩士論文,2011
    [1.17] N. O’Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled
    LiNbO3 optical parametric oscillator.”, Optics letters, Vol.24, No.23, pp. 1750-1752, 1999
    [1.18] Y. H. Chen, H. P. Chung, W. K. Chang, H. T. Lyu, J. W. Chang, and C. H. Tseng, “Electro-optically tunable, multi-wavelength optical parametric generators in
    aperiodically poled lithium niobates.”, Optics express, Vol.20, No.27, pp. 28989-29001, 2012
    [1.19] K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate.”, Optics Letters, Vol.25, No.23, pp. 1714-1716, 2000
    [1.20] M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system
    design and performance.”, Applied Physics B, Vol.96, No.1, p. 201, 2009
    [1.21] J. Spigulis, L. Gailite, A. Lihachev, and R. Erts, “Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength
    photoplethysmography.”, Applied optics, Vol.46, No.10, pp. 1754-1759, 2007
    第二章 理論
    [2.1] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric.”, Physical review, Vol.127, No.6, p. 1918, 1962
    [2.2] Y. C. Huang, “Principles of Nonlinear Optics Course Reader.”, Institute of Photonics Technologies / Department of Electrical Engineering, National Tsinghua University, Hsinchu, Taiwan, 2007
    [2.3] 張煒堃,「以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射」,國立中央大學,碩士論文,2009
    第三章 模擬方法與結果
    [3.1] J. H. Holland, “Genetic algorithms.”, Scientific american, Vol.267, No.1, pp. 66-73, 1992
    [3.2] G. Cormier, R. Boudreau, and S. Thériault, “Real-coded genetic algorithm for Bragg grating parameter synthesis.”, JOSA B, Vol.18, No.12, pp. 1771-1776, 2001
    [3.3] A. Popov, “Genetic algorithms for optimization.”, User Manual, Hamburg, 2013,2005
    [3.4] W. Y. Lin, W. Y. Lee, and T. P. Hong, “Adapting crossover and mutation rates in genetic algorithms.”, J. Inf. Sci. Eng., Vol.19, No.5, pp. 889-903, 2003
    [3.5] R. L. Haupt, and S. Ellen Haupt, “Practical genetic algorithms.”, 2004
    [3.6] 劉宜臻,「設計非週期性準相位匹配光柵以達成非等間距之多波長轉換」,國立清華大學,碩士論文,2009
    [3.7] 鍾宏彬,「以單一非週期性晶疇極化反轉鈮酸鋰電光晶片達成可調變多波長之窄頻光參量產生/振盪器之研究」,國立中央大學,碩士論文,2012
    第四章 晶片製程
    [4.1] S. Miyazawa, “Ferroelectric domain inversion in Ti‐diffused LiNbO3 optical waveguide.”, Journal of Applied Physics, Vol.50, No.7, pp. 4599-4603, 1979
    [4.2] J. Webjorn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide.”, IEEE Photonics
    technology letters, Vol.1, No.10, pp. 316-318, 1989
    [4.3] A. C.Nutt, V. Gopalan, and M. C. Gupta, “Domain inversion in LiNbO3 using direct electron‐beam writing.”, Applied physics letters, Vol.60, No.23, pp. 2828-2830, 1992
    [4.4] A. Agronin, Y. Rosenwaks, and G. Rosenman, “Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy.” Applied Physics
    Letters, Vol.85, No.3, pp. 452-454,2004
    [4.5] D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second‐harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains.”, Applied Physics Letters, Vol.37, No.7, pp. 607-609, 1980
    [4.6] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled
    LiNbO3.”, JOSA B, Vol.12, No.11, pp. 2102-2116, 1995
    第五章 實驗量測與結果分析
    第六章 結論與未來展望
    [6.1] P. Gross, M. E. Klein, H. Ridderbusch, D. H. Lee, J. P. Meyn, R. Wallenstein, and K. J. Boller, “Wide wavelength tuning of an optical parametric oscillator through electro-optic shaping of the gain spectrum.”, Optics letters, Vol.27, No.16, pp. 1433-1435, 2002
    [6.2] S. T. Lin, Y. Y. Lin, R. Y. Tu, Y. C. Huang, A. C. Chiang, and J. T. Shy, “3-μm Continuous-wave singly resonant OPO.”, In 2008 Conference on Lasers and Electro-
    Optics and 2008 Conference on Quantum Electronics and Laser Science, pp. 1-2, 2008

    QR CODE
    :::