| 研究生: |
王文甫 Wen-fu Wang |
|---|---|
| 論文名稱: |
設計與製作圓錐平板型生物反應器 Designed and Validated Cone and Plate Bioreactor |
| 指導教授: |
鍾志昂
Chih-Ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 生物反應器 、圓錐平板 、幹細胞 、組織工程 、剪應力 |
| 外文關鍵詞: | Bioreactor, Tissue engineering, Cone and plate, stem cell, Shear stress |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醫學的進步和發展往往和科技的進步有著不可分割的關係,近代發展的新領域-組織工程,就是希望可以於體外培養的方式,置換我們體內失去功能或是受損的器官及組織,其中生物反應器在組織工程中更是不可或缺的裝置,除了提供細胞基本生存所需的環境之外,還可模擬細胞生長時的環境,或是提供不同的機械刺激調控細胞的基因表現或是分化路徑。
本研究是以圓錐平板黏度計的原理為範本,並依據許多學者數值計算的結果為基礎,設計且製作出,可於體外培養細胞並可針對所需定量提供剪應力刺激的生物反應器,最後再利用此生物反應器,並以老鼠骨髓幹細胞為對象分別提供0、0.8、1.2、1.6 Pa的剪應力刺激4小時,以探討老鼠骨髓幹細胞受剪應力後細胞形狀及增生速率的改變。結果發現,施加不同的剪應力刺激老鼠骨髓幹細胞,細胞的形狀和細胞增生速率都不隨著剪應力增加而和靜態有所不同。
系統經過測試,證明此生物反應器為一穩定且可提供寬廣剪應力範圍之裝置,未來更可以利用此系統提供不同的刺激條件,以提供組織工程領域相關研究發展。
The progress and development of medical science has an inseparable relation with technology. The new frontier in latest development - tissue engineering, is a technology using cell-scaffold constructs developed in vitro to replace injury or function losing organs and tissues. Bioreactors are an indispensable device for the development of tissue engineering. They provide not only basic living environments for cells, but also mock up the environments for functional tissues to form. Besides, bioreactors may also be used to apply various different mechanical stimuli to control cells’ gene expression or differential pathway.
In this study, a bioreactor which can be used to culture cells in vitro and provide quantitative shear stress has been designed. The model of the design is based on the regulation of the cone and plate viscometer, and the stress values are computed using the experiential formula proposed in previous literature. The in-house bioreactor was used to provide four hours of shear stress in a day in 0, 0.8, 1.2, 1.6 Pa respectively to stimulate the rat bone marrow stem cells. Results show when different shear stresses were applied, the cell shape and proliferation rate were not changing obviously comparing to the case of no shear imposed.
This study demonstrates that the bioreactor constructed in house can be a stable device providing broaden shear stresses. With this devices, further tests on the cell responses to the shear stimulation can be conducted for tissue engineering applications.
(1) Angele, P., Yoo, J.U., Smith, C., Mansour, J., Jepsen, K.J., Nerlich, M., and Johnstone, B., 2003. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. Journal of Orthopaedic Research 21, 451-457.
(2) Bao, X., Clark, C.B., and Frangos, J.A., 2000. Temporal gradient in shear-induced signaling pathway:involvement of MAP kinase,c-fos,and connexin 43. Am. J. Physiol. Heart Circulat. Physiol. 278, H1598-H1605.
(3) Brown, T.D., 2000. Techniques for mechanical stimulation of cells in vitro:a review. Journal of Biomechanics 33, 3-14.
(4) Bussolari, S.R., Dewey, C.F., and Gimbrone, M.A., 1981. Apparatus for subjecting living cells to fluid shear stress. Rev. Sci. Instrum 53, 1851-1854.
(5) Butler, D.L., 2000. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122, 570-575.
Chaturani, P. and Narasimman, S., 1990. Flow of power-law fluids in cone-plate viscometer. Acta Mechanica 82, 197-211.
(6) Chen, K.D., Li, Y.D., Kim, M., Li, S., Yuan, S., Chien, S., and Shyy, J.Y.J., 1999.Mechanotransduction in response to shear stress. The Journal of Biological Chemistry 274, 18393-18400.
(7) Cheng, D.C.-H., 1968. The effect of secondary flow on the viscosity measurement using a cone-and-plate viscometer. Chemical Engineering Science 23, 895-899.
(8) Chung, C.A., Weng, C.S. and Tu, M.Z., 2006. The periodical Shear enviorment of a Cone-and-plate Bioreactor. Journal of Fluids Engineering 128, 388-393.
(9) Chung, C.A., Tzou, M.R. and Ho, R.W., 2005. Oscillatory flow in a cone-and-plate bioreactor. Journal of Fluids Engineering 127, 601-610.
(10) Cox, D.B., 1962. Radial flow in the cone-plate viscometer. Nature 193, 670.
(11) Das, P., Schurman, D.J. and Simth, R.L., 1997. Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. Journal of Orthopaedic Research 15, 87-93.
(12) Dewey, C.F., Bussolari, S.R., Gimbrone, M.A. and Davies, P.F., 1981. The dynamic response of vascular endothelial cells to fluid shear stress. Journal of Biomechanical Engineering. 103, 177-185.
(13) Einav, S., Dewey, C.F., and Hartenbaum, H., 1994. Cone-and-plate apparatus: a compact system for studying well-characterized turbulent flow fields. Experiments in Fluids 16, 196-202.
(14) Garcia, A.M., Lark, M.W., Trippel, S.B. and Grodzinsky, A.J., 1998. Transpart of tissue inhibitor of metalloproteinases-1 through cartilage: contributions of fluid flow and electrical migration. Journal of Orthopaedic Research 16, 734-742.
(15) Griffith, L.G. and Naughton, G., 2002. Tissue engineering-current challenges and expanding opportunities. Science 295, 1009-1016.
(16) Haseltine, W.A., 2001. The emergence of regenerative medicine. J. Regen. Med. 2, 17.
(17) Huang, C.Y., Hagar, K.L., Frost, L.E. and Sun, Y., 2004. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22, 313-23.
(18) Jiang, G.L., White, C.R., Stevens, H.Y., and Frangos, J.A., 2002. Temporal gradients in shear stimulate oseoblastic proliferation via ERK 1/2 and retinoblastoma protein. Am. J. Physiol. Endocrinol. Metab. 283, E383-E389.
(19) Kobayashi, N., Yasu, T., Ueba, H., Sata, M., Hashimoto, S., Kuroki, M., Saito, M. and Kawakami, M., 2004. Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Experimental Hematology 32, 1238-1245.
(20)Kreke, M.R., Goldstein, A.S., 2004. Hydrodynamics shear stimulates osteocalcin expression but not proliferation of bone marrow stromal cells. Tissue Engineering 10, 780-787.
(21) Langer, R. and Vacanti, J.P., 1993. Tissue Engineering. Scince 26, 920-926.
(22) Lee, A.A., Graham, D.A., Cruz, S.D., Ratcliffe, A., and Karlon, W.J., 2002. Fluid shear stress-induced alignment of cultured vascular smooth muscle cells. Journal of Biomechanical Engineering 124, 37-43.
(23) Martin, I., Wendt, D. and Heberer, M., 2004. The role of bioreactor in tissue engineering. TRENDS in Biotechnology 22, 80-86.
(24) Mckinley, G.H., Oztekin, A., Byars, J.A. and Brown, R.A., 1995. Self-similar instabilities in elastic flows between a cone and a plate. J. Fluid Mech. 285, 123-164.
(25) Mohtai, M., Gupta, M.K., Doulon, B., Ellison, B., Cooke, J., Gelbbons, G., Schurman, D.J. and Smith, R.L., 1996. Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. Journal of Orthopaedic Research 14, 67-73.
(26) Mooney, M., Ewart, R.H., 1934. The conicylindrical viscometer. Physis 5, 350-354.
(27) Park, J.S., Chu, J.S., Cheng, C., Chen, F., Chen, D. and Li, S., 2004. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology and Bioengineering 88, 359-368.
(28) Pelech, I., Shapiro, A.H., 1967. Flexible disk rotating on a gas film next to a wall. Trans. ASME E: J. Appl. Mech. 31, 557-584.
(29) P?rtner, R., Nagel-Heyer, S., Goepfert, C., Adamietz, P., and Meenen, N.M., 2005. Bioreactor design for tissue engineering. Journal of Bioscience and Bioengineering 100, 235-245.
(30) Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R., 1999. Multilinearge potential of adult human mesenchymal stem cells.Science 284, 143-147.
(31) Rabbany, S.Y., Heissig, B., Hattori, K. and Rafii, S., 2003. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. TRENDS in Biotechnology 9, 109-117.
(32) Saxena, A.K., 2005. Tissue engineering: resent concepts and strategies. Journal of Indian Association of Pediatric Surgeons 10, 14-19.
(33) Sdougos, H.P., Bussolari, S.R., and Dewey, C.F., 1984. Secondary flow and turbulence in a cone-and-plate device. J. Fluid Mech. 138, 379-404.
(34)Shieh, S. J., Terada, S. & Vacanti, J.P., 2004. Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials 25, 1545-57.
(35) Simmons, C.A., Matlis, S., Thornton, A.J., Chen, S., Wang, C.Y. and Mooney, D.J., 2003. Cyclic strain enhance matrix minerlization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK 1/2) signaling pathway. Journal of Biomechanics 36, 1087-1096.
(36) Smith, R.L., Carter, D.R., and Schurman, D.J., 2004. Pressure and shear differentially alter human articular chondrocyte metabolism. Clinical Orthopaedics and related Reseach 427S, S89-S95.
(37) Walters, K., Waters, N.D., 1966. Polymer systems,deformation and flow. In Proc. Brit. Soc. Rheol. Macmmillan.
(38) Wang, H., Riha, G.M., Yan, S., Li, M., Chai, H., Yang, H., Yao, Q. and Chen, C., 2005. Shear stress induces endothelial differentiation from a murine embroyonic mesenchymal progenitor cell line. Arterioscler Thrombosis and Vascular Biology 25, 1817-1823.
(39) Watt, F.W. and Hogan, B.L., 2000. Out of eden: stem cells and their niches. Science 287, 1427-1430.
(40)徐善慧, 陳俊宇, 2002. 巧奪天工的人類智慧-組織工程. 科學發展356, 4-9.
(41)呂明憲,2005. 週期式圓錐平板裝置之設計與量測. 中央大學機械工程學系碩士論文.
(41)翁昶生,2004. 圓錐平板型生物反應器脈動式二次流場研究.中央大學機械工程碩士論文.