| 研究生: |
施政廷 Zheng-Ting Sh |
|---|---|
| 論文名稱: |
普羅比機率型動態用路人均衡模型演算法求解效率之比較 |
| 指導教授: |
陳惠國
Huey-Kuo Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 普羅比 、機率型動態用路人均衡模型 、機率型 、變分不等式 |
| 外文關鍵詞: | probit, Dynamic User-Equilibrium, Stochastic |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
明確型動態用路人均衡模型係假設用路人具有完整資訊,然而實際上用路人並不一定具有完整資訊,而機率型動態用路人均衡模型以機率分配的形式來處理用路人路徑選擇問題,使得模型更趨向一般化。
機率型動態用路人均衡模型依據機率分配的不同而分為羅吉特模型及普羅比模型。羅吉特模型因為假設方案之間具有獨立且不相關(IIA)的特性,而具有效求解的優點,但卻無法考慮用路人選擇方案間的相關性,而普羅比機率型動態用路人均衡模型,雖然缺乏求解效率,但可以有效解決羅吉特模型的爭議
由於普羅機率型動態用路人均衡模型中,必須考慮時空間的相關性,本研究接續馮君惠(1998)的研究,更加深入探討普羅比機率型動態用路人均衡模型,並試圖將不同的求解演算法應用至動態路徑選擇中,並以不同的測試例比較各演算法的求解效率,提供日後相關應用的參考建議。
We assume the distribution is the Gumbel distribution which yield the logit model or Normal distribution which yield the probit model. The logit model hypothesizes the independent and irrelative between alternative and can solve the problem effectively. The probit model is realistic but it solve the problem ineffectively.
We must consider the relation between time and space in stochastic dynamic user equilibrium model with probit model and develop different algorithms to solve the probit model. Finally, we suggest several indices to evaluste these algorithms and make conclusions to provide a reference for further improvement.
1.杜明臨,「機率型動態路徑選擇模型之研究」,國立中央大學土木工程學研究所碩士論文,民國85年。
2.薛哲夫,「明確型動態旅運選擇模型之研究」,國立中央大學土木工程學研究所碩士論文,民國85年。
3.張家偉,「路徑變數產生法求解動態交通量指派模型之效率比較」,國立中央大學土木工程研究所碩士論文,民國86年。
4.馮君惠,「動態機率型用路人最佳化模型之求解演算法效率比較」,國立中央大學土木工程研究所碩士論文,民國87年。
5.Boyce, D.E., Ran, B. and LeBlanc, L.J., 1995. Solving Instantaneous Dynamic User-Optimal Traffic Assignment Model. Transportation Science, 29, 128-142.
6.Carey, M., 1986. A Constraint Qualification for a Dynamic Traffic Assignment Model. Transportation Science, 20, 55-58.
7.Carey, M., 1987. Optimal Time-Varying Flows on Congested Networks. Operations Research, 35, 58-69.
8.Casscetta, E., 1991, A Day-to-Day and Within-Day Dynamic Stochastic Traffic Assignment Model. Transportation Research, 25A, 277-291.
9.Chen, H.K. and Hsueh, C.F., 1996. A Dynamic User-Optimal Route Choice Problem Using a Link-Based Variational Inequality Formulation. Paper Presented at the 5th World Congress of the RSAI, Tokyo, May 2-6.
10.Chen, H.K. and Tu, M.L., 1996. A Note on Link Travel Time Functions under Dynamic Loads by Daganzo. Paper Presented at the 5th World Congress of the RSAI Conference, Tokyo, Japan.
11.Chen, H.K. and Hsueh, C.F., 1997a. Combining Signal Timing Plan and Dynamic Traffic Assignment. Presented at the 76th Annual Meeting of the Transportation Research Board, Washington DC.
12.Chen, H.K. and Hsueh, C.F., 1997b. A Model and an Algorithm for the Dynamic User-Optimal Route Choice Problem. Transportation Research, 32B(3), 219-234.
13.Chen, H.K. and Hsueh, C.F., 1998.03. A Discrete-Time Dynamic User-Optimal Departure Time/Route Choice Problem Route Choice Model. Transportation Engineering, ASCE, 124(3), 246-254.
14.Damberg, O., Lundgren, J.T. and Patriksson, M., 1996. An Algorithm for the Stochastic User Equilibrium Problem. Transportation Research, 30B(2), 115-131.
15.Friesz, T.L., Luque, F.J., Tobin, R.L. and Wie, B.W., 1989. Dynamic Network Traffic Assignment as a Continuous Time Optimal Control Problem. Operations Research, 37, 893-901.
16.Friesz, T.L., Bernstein, D., Smith, T.E., Tobin, R.L. and Wie, B.W., 1993. A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem. Operations Research, 41, 179-191.
17.Janson, B.N., 1991. Dynamic Traffic Assignment for Urban Road Networks. Transportation Research, 25B, 143-161.
18.Jayakrishnan, R., Tsai, W.K., Prashker, Joseph, N. and Rajadhyaksha, S., 1994. A Faster Path-Based Algorithm for Traffic Assignment. Presented at the 73th Annual Meeting of the Transportation Research Board, Jan 9-13.
19.Katoh, K., Ibaraki, T. and Mine, H., 1982. An Efficient Algorithm for K Shortest Paths. Networks, 12, 411-427.
20.Luque, F.J. and Friesz, T.L., 1980. Dynamic Traffic Assignment Considered as a Continuous Time Optimal Control Problem. Presented at the TIMS/ORSA Joint National Meeting, Washington DC.
21.Matsui, H., 1987. A Model of Dynamic Traffic Assignment. Text of Infrastructure Planning Lectures, JSCE, 18, 84-96.
22.Merchant, D.K. and Nemhauser, G.L., 1978a. A Model and an Algorithm for the Dynamic Traffic Assignment Problems. Transportation Science, 12, 183-199.
23.Merchant, D.K. and Nemhauser, G.L., 1978b. Optimality Conditions for a Dynamic Traffic Assignment Model. Transportation Science, 12, 200-207.
24.Perko, A., 1986. Implementation of Algorithms for K Shortest Loopless Paths. Networks, 16, 149-160.
25.Patriksson, M., 1994. The Traffic Assignment Problem - Models and Methods, VSP BV, The Netherlands.
26.Ran, B. and Boyce, D.E., 1994. Dynamic Urban Transportation Network Models: Theory and Implications for Intelligent Vehicle Highway Systems. Lecture Notes in Economics and Mathematical Systems 417, Springer-Verlag, New York.
27.Ran, B. and Boyce, D.E., 1996. A Link-Based Variational Inequality of Ideal Dynamic User-Route Optimal Choice Problem. Transportation Research, 30B(1), 47-51.
28.Ran, B., Hall, R.W. and Boyce, D.E., 1996. A Link-Based Variational Inequality Model for Dynamic Departure Time/Route Choice. Transportation Research, 30B(1), 31-46.
29.Ran, B. and Shimazaki, T., 1989a. A General Model and Algorithm for the Dynamic Traffic Assignment Problem. Proceedings of the Fifth World Conference Transport Research, Yokohama, Japan.
30.Ran, B. and Shimazaki, T., 1989b. Dynamic User Equilibrium Traffic Assignment for Congested Transportation Networks. Presented at the Fifth World Conference on Transport Research, Yokohama, Japan.
31.Sheffi, Y., 1985. Urban Transportation Networks : Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Englewood Cliffs, NJ.
32.Smith, M.J., 1993. A New Dynamic Traffic Model and the Existence and Calculation of Dynamic User Equilibria on Congested Capacity-Constrained Road Networks. Transportation Research, 27B, 49-63.
33.Tobin, R.L. and Friesz, T.L., 1988. Sensitivity Analysis for Equilibrium Network Flow. Transportation Science, 22(4), 242-250.
34.Vythoulkas, P. C., 1990. Two Models for Predicting Dynamic Stochastic Equilibrium in Urban Transportation Networks. Proceedings of 11th International Symposium on Transportation and Traffic Theory, Elsevier Science, Amsterdam, 253-272.
35.Wie, B.W., 1989. Dynamic System Optimal Traffic Assignment on the Congested Multidestination Networks. Presented at the Fifth World Conference on Transport Research, Yokohama, Japan.
36.Wie, B.W., Friesz, T.L. and Tobin, R.L., 1990. Dynamic User Optimal Traffic Assignment on Congested Multidestination Networks. Transportation Research, 24B, 443-451.
37.Yen, J. Y., 1971. Finding the K Shortest Loopless Paths in a Network. Management Science, 17, 712-716.