跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林柏旻
Po-Min Lin
論文名稱: 以無線訊號強度輔助GPS之群組定位技術
Group Positioning Technology Using GPS with AuxiliaryRadio Signal Strength
指導教授: 許獻聰
Shiann-Tsong Sheu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 99
語文別: 英文
論文頁數: 40
中文關鍵詞: 群組訊號強度藍芽全球衛星定位系統
外文關鍵詞: Signal Strength, Bluetooth, Group, GPS, Location Estimation
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於無線通訊科技的迅速發展,連帶著使以定位為基礎的適地性服務
    (Location-Based Service, LBS) 在商業、公眾安全與軍事上的應用也博得青睞。適地性
    服務是一種以位置為基礎所提供的行動服務,主要應用包括尋找鄰近資訊、行人導航、
    汽車導航、人身安全、人員與車隊管理、社群交友、區域廣告等,導航只是最常見的應
    用之一。而不論是戶外或室內的定位技術,其最大爭議便是定位的精確度,目前已經有
    許多文獻報告提供可利用或已應用之定位演算法。其中針對戶外定位系統服務部分,全
    球衛星定位系統(GPS)是室外定位技術中最成熟的。
    GPS與全球導航衛星系統(GLONASS)逐步增加新的頻段和更新衛星,以及伽利
    略(Galileo)、北斗二號(CNSS)、準天頂衛星系統(QZSS)與歐洲同步衛星導航覆
    蓋服務(EGNOS)等新興衛星導航的建置,使得全球導航衛星系統技術已日趨普及。
    然而任何一種行動服務應用都依靠著識別使用者所在的位置為基礎,但 GPS 仍存
    在著直視性 (Line of Sight, LoS)限制,在室外有遮蔽物時,定位精準度將會嚴重受到
    影響,甚至會因為收不到衛星訊號,導致定位精準度嚴重降低,尤其在建築物密集的都
    會地區更是明顯。因此,本論文利用IEEE 802.15.1 – Bluetooth的短距離傳輸特性來輔
    助 GPS 定位。在研究中,行動裝置透過 Bluetooth 互相交換定位資訊(如:經緯度) 並透
    過訊號強度推算距離,用來修正群組間成員的距離誤差。
    本論文提出一個新穎的群組定位方式,提供高精準群組定位的相對位置評估。本
    論文針對需要群組定位的應用,例如腳踏車車隊、登山隊等,提出利用 GPS 搭配藍芽
    通訊提高精準度,提供群組間定位精準的相對位置資訊。


    As the rapid development in wireless technology, Location-Based Service (LBS) is
    widely used in the various areas; civil navigation, public safety, and military. It provides
    many mobile services; neighbor information searching, pedestrian navigation, personal
    security, personnel and fleet management, location status of friends, and regional advertising.
    Navigation is one of the most common applications. However, any kind of LBS is relying on
    to identify the user’s location.
    When developing the indoor or outdoor positioning algorithm, the accuracy is the
    primary concern. Several useful positioning algorithms have been published for performing
    LBS. In open sky environments, Global Navigation Satellite System (GNSS) is the
    well-known navigation system. GNSS is the generic name given to the satellite-based
    navigation systems including global positioning system (GPS), global navigation satellite
    system (GLONASS), and Galileo.
    When using GPS without extra assistance, such as A-GPS or indoor GPS beacon, there
    are some existing drawbacks; for example, the precision will be degraded in the
    Non-Line-of-Sight (NLoS) environment such as dense metropolis, and the location will not be
    able to perform in the weak signal environment such as indoor. In order to solve the problem
    and improve the positioning accuracy, the mobile devices use Bluetooth to exchange GPS iv
    position information (such as: latitude and longitude) and use signal strength of Bluetooth to
    estimate the distance between the group members.
    This thesis proposes using GPS with auxiliary Bluetooth signal strength to improve the
    accuracy of position to provide relative permutation between the group members. We propose
    a group positioning algorithm to obtain the relative permutated location, which is particularly
    used for application such as a bicycle team, climber team and so on.

    中文摘要 ................................................................................................................................ i ABSTRACT ......................................................................................................................... iii CONTENTS .......................................................................................................................... v FIGURE LIST ..................................................................................................................... vii TABLE LIST ........................................................................................................................ ix 1. INTRODUCTION ........................................................................................................ 1 1.1 Preface................................................................................................................ 1 1.2 Problem Description ........................................................................................... 2 1.3 Thesis Organization ............................................................................................ 4 2. RELATED WORKS .................................................................................................... 5 2.1. Global Position System ....................................................................................... 5 2.2. Location Method ................................................................................................ 6 2.2.1. Angle of Arrival ......................................................................................... 6 2.2.2. Time of Arrival .......................................................................................... 7 2.2.3. RADAR-Radio Map .................................................................................. 8 2.2.4. Received Signal Strength ........................................................................... 9 2.2.5. Cooperative Localization ......................................................................... 10 2.3. Bluetooth .......................................................................................................... 12 3. GROUP POSITIONING ............................................................................................ 13 3.1. Connecting Phase ............................................................................................. 14 3.2. Distance Correcting Phase ................................................................................ 14 3.3. Relative Permutation Estimation Phase ............................................................. 17 4. LOCATION ESTIMATION ....................................................................................... 20 4.1. Experimental Testbed ....................................................................................... 20 vi 4.2. Performance Evaluation .................................................................................... 22 4.3. Hidden node ..................................................................................................... 28 5. CONCLUSIONS ........................................................................................................ 37 6. REFERENCES........................................................................................................... 38

    [1] Kamil A. Grajski and Ellen Kirk, Towards a Mobile Multimedia Age – Location-Based
    Services: A Case Study, Wireless Personal Communications, vol. 26, pp.105–116,
    September 2003.
    [2] Caffery, J., Jr., and Stuber, G.L., “Subscriber location in CDMA cellular networks,”
    IEEE Transactions on Vehicular Technology, vol. 47, pp. 406–416, May 1998.
    [3] SnapTrack Inc., “Location Technologies for GSM, GPRS, and UMTS Network,” White
    Paper of Snap Track Inc., U.S.A., 2003.
    [4] P. Castro, P. Chiu, T. Kremenek and R.R. Muntz, “A Probabilistic Room
    Location Service for Wireless Networked Environments,” in Proceedings of the 3rd
    International Conference on Ubiquitous Computing, pp.18–34, January 2001.
    [5] J-J. Pan, Q. Yang and S-J. Pan, “Online Co-Localization in Indoor Wireless Networks
    by Dimension Reduction,” in Proceedings of AAAI Conference on Artificial Intelligence,
    vol. 2, pp.1102–1107, 2007.
    [6] E. D. Kaplan and C. J. Hegarty, Eds., GPS: Principles and Applications. Reading,
    MA:Artech House, 2006.
    [7] A-M. Ladd, K-E. Bekris, A. Rudys, G. Marceau, L-E. Kavraki, and D-S. Wallach,
    “Robotics-Based Location Sensing Using Wireless Ethernet,” in Proceedings of the 8th
    ACM International Conference on Mobile Computing and Networking, pp.227–238,
    2002.
    [8] “Meteorological elements and formula”. Available:
    http://photino.cwb.gov.tw/rdcweb/lib/comput2.htm
    [9] R. Roberts, “IEEE P802.15 Wireless Personal Area Networks: Ranging Subcommittee
    Final Report,” Ranging Subcommittee of TG4a, 2004. 39
    [10] K. W. Cheung, H. C. So, W.-K. Ma, and Y. T. Chan, “A Constrained Least Squares
    Approach to Mobile Positioning: Algorithms and Optimality,” Applied Signal
    Processing, vol. 2006, pp. 1–23, 2006.
    [11] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-BASED User Location
    and Tracking System,” in Proceedings of INFOCOM, vol. 2, pp. 775–784, April 2000.
    [12] Hui Wang; Huaibei Zhou; Li Zhu; Qing He; Zairong Tian; , "Analysis and Research on
    Indoor Positioning Method Based on IEEE 802.11," in Proceedings of Wireless
    Communications, Networking and Mobile Computing , pp.2181-2183, 21-25 September
    2007.
    [13] H. Wymeersch, U. Ferner, and M. Z. Win, “Cooperative Bayesian self-tracking for
    wireless networks,” IEEE Commun. Lett., vol. 12, no. 7,July 2008.
    [14] Ferner, U.; Wymeersch, H.; Win, M.Z.; , "Cooperative anchor-less localization for large
    dynamic networks," in Proceedings of Ultra-Wideband, 2008, vol.2, no., pp.181-185,
    10-12 September 2008.
    [15] Wymeersch, H.; Lien, J.; Win, M.Z., "Cooperative Localization in Wireless Networks,"
    Proceedings of the IEEE, vol.97, no.2, pp.427-450, February 2009.
    [16] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product
    algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.498–519, February 2001.
    [17] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Process. Mag., vol. 21,
    no. 1, pp. 28–41, 2004.
    [18] "IEEE Standard for Information Technology - Telecommunications and Information
    Exchange Between Systems - Local and Metropolitan Area Networks - Specific
    Requirements. - Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer
    (PHY) Specifications for Wireless Personal Area Networks (WPANs)," IEEE Std
    802.15.1-2005 (Revision of IEEE Std 802.15.1-2002) , vol., no., pp.0_1-580, 2005. 40
    [19] “Android developers”. Available:
    http://developer.android.com/sdk/index.html
    [20] Tobagi, F.; Kleinrock, L.; , "Packet Switching in Radio Channels: Part II--The Hidden
    Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution,"
    Communications, IEEE Transactions, vol.23, no.12, pp. 1417- 1433, Dec 1975.

    QR CODE
    :::