| 研究生: |
陳宥錚 YuCheng, Chen |
|---|---|
| 論文名稱: |
六方氮化硼與菱形氮化硼之分析 Characterization of hexagonal Boron Nitride and rhombohedral Boron Nitride |
| 指導教授: |
賴昆佑
Kun-Yu Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 氮化硼 、六方氮化硼 、菱形氮化硼 、深紫外光發光二極體 、有機金屬氣相沉積法 、五三比 |
| 外文關鍵詞: | Boron Nitride, hexagonal Boron Nitride, rhombohedral Boron Nitride, deep ultraviolet light emitting diodes, metal organic chemical vapor deposition, V/III ratio |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化硼(boron nitride, BN)近年來成為深紫外光發光二極體所需的理想P型材料,因此具備sp2鍵結的六方氮化硼(h-BN)受到很大關注,h-BN具備高能隙(~ 6.0 eV)與低電洞活化能(~ 30 meV),能使深紫外光不被氮化硼吸收,還能大幅提升電洞濃度,增加元件的外部量子轉換效率。
然而同為sp2鍵結的菱形(rhombohedral)氮化硼(r-BN),其晶格結構與六方氮化硼相似,在常用的X射線繞射儀(x-ray diffraction, XRD)量測中,六方氮化硼與菱形氮化硼的訊號位置幾乎重疊,兩者僅差不到0.1°,無法明確分辨六方氮化硼與菱形氮化硼的結構。因此,我們藉由高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy, HRTEM)的影像,觀察h-BN與r-BN在晶格結構上的差異。
為了得到高品質的BN的磊晶層,本研究利用有機金屬氣相沉積法(metal-organic chemical vapor deposition, MOCVD)成長BN,先在藍寶石基板上成長單晶氮化鋁(AlN),再接著成長BN。我們透過五三比的調變來改善BN的晶格品質,並藉由XRD及HRTEM分析BN的晶格結構。根據三組五三比(2454、663、237)的分析結果,我們發現h-BN與r-BN會共存於磊晶層,且五三比為663的BN磊晶層有最佳的晶格品質。
Hexagonal Boron Nitride (h-BN) with sp2 bonding is an attractive p-type material for the application in deep-ultraviolet light emitting diodes (DUV LEDs). This is due to the wide bandgap (~ 6.0 eV) and low activation energy of acceptors (~30 meV) of h-BN, rendering high transmission of DUV photons and high p-type conductivity for DUV LEDs.
However, rhombohedral BN (r-BN), also with sp2 bonding, is of a similar lattice structure with h-BN, which yields almost identical X-ray diffraction (XRD) angles. With the diffraction-peak difference less than 0.1°, h-BN and r-BN can not be differentiated by XRD patterns alone, but requires high-resolution transmission electron microscope (HRTEM) to reveal the minor difference in lattice between h-BN and r-BN.
In this study, we perform epitaxial growth of BN by metal-organic chemical vapor deposition (MOCVD) on single-crystalline aluminum nitride (AlN), which is previously grown on the sapphire substrate. In order to improve the crystal qualities of BN, V/III ratios (i.e. the molar-flow ratio of NH3 to triethylborane) was varied from 237 to 2454. According to the characterization results with XRD and HRTEM, the MOCVD-grown BN wafer contains hexagonal and rhombohedral lattices at the BN/AlN interface, and the wafer grown with the V/III ratio of 663 exhibit superior qualities to those attained with the ratios of 237 and 2454.
[1] H. X. Jiang, and J. Y. Lin, Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond. Sci. Technol. 29, 084003 (2014).
[2] X. H. Jiang, et al. Reduction of the Mg acceptor activation energy in GaN, AlN, Al0.83Ga0.17N and MgGaδ-doping (AlN)5/(GaN)1: the strain effect. J. Phys. D: Appl. Phys. 48, 475104 (2015).
[3] H. Koga, et al. Molecular dynamics study of deposition mechanism of cubic boron nitride. Sci. Technol. Adv. Mater. 2, 349-356 (2001).
[4] Chuhei, O. and Ayato, N. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Matter 9, 1–20 (1997).
[5] Gianluca G. et al. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007).
[6] M. Bokdam, G. Brocks, M. I. Katsnelson, and P. J. Kelly Schottky barriers at hexagonal boron nitride/metal interfaces: A first-principles study. Phys. Rev. B 90, 085415 (2014).
[7] Dahal, R. et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material Appl. Phys. Lett. 98, 211110-211110-3 (2011).
[8] M. Soltani, R. Soref, T. Palacios, and D. Englund, AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range. Optics Express Vol. 24, No. 22, 25415-25423 (2016).
[9] M. Chubarov, et al. Review Article: Challenge in determining the crystal structure of epitaxial 0001 oriented sp2-BN films. J. Vac. Sci. Technol. A, 36, 030801 (2018).
[10] M. Chubarov, et al. Polytype pure sp2-BN thin films as dictated by the substrate crystal structure. Chem. Mater. 27, 1640-1645 (2015).
[11] D. Golberg, et al. Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979-2993 (2010).
[12] A. Rice, et al. Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride. J. Cryst. Growth. 485, 90-95 (2018).
[13] D. H. Berns, and M. A. Cappelli, Cubic boron nitride synthesis in low-density supersonic plasma flows. Appl. Phys. Lett. 68, 2711 (1996).
[14] Masataka I. et al. High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio. Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
[15] Y. Feng et al. Competitive growth mechanisms of AlN on Si (111) by MOVPE. Sci Rep. 4, 6416 (2014).
[16] Q. S. Paduano, M. Snure, and J. Shoaf, Effect of V/III ratio on the growth of hexagonal boron nitride by MOCVD. Mater. Res. Soc. Symp. Proc. 1726. (2015).