| 研究生: |
曼黎 Mohammad Daman Huri |
|---|---|
| 論文名稱: |
應用多時期Sentinel-1 合成孔徑雷達影像進行崩塌及淹水偵測-以印尼爪哇島Pacitan地區為例 Landslide and Flood Mapping Using Multi-Temporal Sentinel-1 C-band SAR Imagery in Pacitan, East Java, Indonesia |
| 指導教授: |
姜壽浩
Gilbert Chiang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 崩塌 、淹水 、合成孔徑雷達 、Cempaka颱風 、Sentinel-1 |
| 外文關鍵詞: | Landslide, Flood, Synthetic Aperture Radar (SAR),, Sentinel-1, Cempaka Tropical Cyclone |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
印尼鄰近赤道,受颱風災害頻繁,印尼國家災害管理局於2016年指出2011年至2015年期間在印尼各個地區發生約2,425起土石流災害事件,其中爪哇島(Java Island)由其為甚。2017年11月27日至30日期間,位於爪哇島的南海岸-東爪哇省的Pacitan地區受到Cempaka颱風侵襲,為印尼受災最嚴重的地區之一,發生淹水與多處崩塌。在災害發生時,對於崩塌和淹水地區的緊急偵測,對於災害急救與處置極為重要,而目前利用衛星資料可有效應、且經濟地進行災害偵測的工作。在多種衛星資源中,合成孔徑雷達(SAR)受到雲霧覆蓋的影響較小,此特性應在颱風事件期間或災後的快速偵測中非常有用,然而使用雷達資料同時針對淹水及崩塌進行偵測之研究較少,且淹水地區與崩塌地在雷達迴波訊號強度較低,兩者特性相似,不易進行區判。本研究認為可以利用變遷偵測之概念,使用多時序的雷達影像針對此問題進行突破。操作上,本研究應用多時期之Sentinel-1衛星C波段影像,針對Cempaka颱風事件,同時進行崩塌和淹水區域之偵測試驗。首先分析Sentinel-1的多時序影像中崩塌和淹水區域的後向散射係數之時序變遷特性。其次,基於上述特性利用支援向量機(Support Vector Machine, SVM)對崩塌和淹水區域進行影像分類,並對分類結果進行精度評估。試驗結果發現,整合VV及VH極化資料之6組時序影像(共12個波段組合)有最佳的分類結果,總體精度可達81.42%,kappa係數為0.51,說明本研究提出之方法能有效地同時進行崩塌即淹水的監測。
The National Disaster Management Agency of Indonesia (2016) recorded 2,425 incidents of land movement disaster during 2011 to 2015, with locations occurring in various parts of Indonesia. In the South Coast of Java Island, Pacitan where located in East Java is one of the most heavily damaged area, during the tropical cyclones, Cempaka, from 27 to 30 November 2017, and induced floods in the lowland area and landslides in the mountainous area. For landslide and flood detection, satellite data is effective to be applied for larger area with economic cost. Among many kinds of satellite resources, synthetic aperture radar (SAR) has less limitation operating in cloudy conditions, which is considered a very useful characteristic for landslide and flood rapid mapping during cloudy condition. With applying SAR data, few studies have focused on the detection of flood and landslide at once, considering their similar backscattering characteristics which are normally lower and difficult to be distinguished. However, this study proposed a method which analyzes the multi-temporal SAR backscattering to investigate the difference between flood and landslide in time domain.
This study focuses on availability of Sentinel-1 C-Band SAR imagery to detect the landslide and flooded area for Cempaka event. The time series of Sentinel-1 were pre-processed to analyze the backscatter change over the landslide and flooded area. Then, the SVM (Support Vector Machine) classifier was applied to map landslide and flooded areas. The accuracy assessment shows that the best classification result is obtained when combining both six VV and six VH polarization time-series data (twelve-bands in SVM classification). The overall accuracy achieves 81.42% and kappa coefficient 0.51. The result indicates the applicability of the proposed method for landslide and flood detection.
Amitrano, D., Di Martino, G., & Iodice, A. (2018). Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 6, , 3290-3300.
Arciniegas, G., Bijker, W., Kerle, N., & Tolpekin, V. (2007). Coherence- and Amplitude- Based Analysis of Seismogenic Damage in Bam, Iran, Using ENVISAT ASAR Data. IEEE Transactions On Geoscience and Remote Sensing, Vol. 45. No. 6, 1571-1582.
Blaschke, T., Feizizadeh, B., & Holbling, D. (2014, December 12). Object-Based Image Analysis and Digital Terrain Analysis for Locating Lanslides in the Urmia Lake Basin, Iran. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,, 7, 4806- 4818.
Bordoni, M., Meisina, C., Zizioli, D., Valentino, R., Bitteli, M., & Chersich, S. (2014). Rainfall-Induced Landslide: Slope Stability Analysis Through Field Monitoring. Landslide Science for a Safer Geoenvironment, Vol. 3, 273-280.
Chang, K.-J., Chan, Y.-C., Chen, R.-F., & Hsieh, Y.-C. (2018). Geomorfological Evolution of Landslide Near an Active Normal Fault in Northern Taiwan, as Revealed by Lidar and Unmanned Aircrat System Data. Natural Hazard Earth System Science, 18, 709-727.
Christophe, E., Chia, A., Yin, T., & Kwoh, L. (2010, July 25-30). 2009 Earthquakees in Sumatera: The Use of L-Band Interferometry in A SAR-Hostile Environment. In Proceedings of the IEEE IGARSS, Honolulu, HI, USA, pp. 1202-1205.
Clausi, D. (2001, June 26). Comparison and fusion of co‐occurrence, Gabor and MRF texture features for classification of SAR sea‐ice imagery. Atmosphere-Ocean, 39(3), 183-194.
Clement, M., Kilsby, C., & Moore, P. (2018). Multi-temporal synthetic aperture radar flood mapping using change detection. J Flood Risk Management 11 , 152–168.
Florence, W., & Frankie, L. (2018). From Landslide Susceptibility to Landslide Frequency ; A territory-wide study in Hongkong. Enggineering Geology, 242, 12-22.
Furuta, R., & Tomiyama, N. (2008). A study of Detection of Landslide Disaster due to the Pakistan Earthquake using ALOS data. ISPRS, 1-4.
Galati, G. (2016). 100 Years of Radar. London: Springer Cham Heidelberg New York.
Hadmoko, D., Lavigne, F., Sartohadi, J., Gomes, C., & Daryono. (2017). Spatial_Temporal Distribution of Landslide in Java and The Triggered Factors. Forum Geografi: Indonesian Journal Spatial and Regional Analysis, 1-15.
Haliza, A., & Mapjabil, J. (2017). Landslide Disaster in Malaysia: an overview. Helath and the Environment Journal, 8(1), 58-72.
Harmsworth, G., & Raynor, B. (2005). Cultural Consideration in Landslide Risk Perception. In T. Glade, M. Anderson, & M. Crozier, Landslide Hazard and Risk (p. 219). The Atrium, Southern Gate, Chichester,West Sussex : John Wiley & Sons Ltd.
Henderson, F., & Lewis, A. (1998). Principles and Applications of Imaging Radar. New York: American Society for Photogrammetry and Remote Sensing.
Henry, J. (2006). Envisat multi-polarized ASAR data for flood mapping. International Journal of Remote Sensing, 27, 1921-1929.
Highland, L.M, L., & Bobrowsky, P. (2008). The landslide handbook—A guide to understanding landslides: Reston,. Virginia: U.S Geological Survey Circular.
Jackson, J. (1997). Glossary of geology, fourth edition: Prepared by the American Geological Institute . Alexxandria, Virginia, USA: Doubleday.
Jin, Y.-Q., & Xu, F. (2013). Polarimetric Sacttering and SAR Information Retreival. Singapore: John Wiley & Sons Singapore Pte.Ltd.
Kandaswamy, U., Adjeroh, D., & Lee, M. (2005, September -). Efficient Texture Analysis of SAR Imagery. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 43(9), 2075.
Kyriou, A., & Nikolakopoulos, K. (2018). Assessing the suitability of Sentinel-1 data for landslide mapping. EUROPEAN JOURNAL OF REMOTE SENSING VOL. 51, NO. 1, 402.
Landuyt, L., Van Wesemel, A., Schumann, G.-P., & Hostache, R. (2019). Flood Mapping Based on Synthetic Aperture Radar: An Assessment of Established Approaches. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 2, , 722-740.
Long, S., Fatoyinbo, T., & Policelli, F. (2014). Flood extent mapping for Namibia using change detection and thresholding with SAR. Environ. Res. Lett. 9 , 1-10.
Mandal, S., & Maiti, R. (2015). Semi-quantitative Approaches for Landslide Assesment and Prediction. London: Springer Science+Business Media Singapore .
Meteorology, Climatology, and Geophysics Agency of Indonesia. (2017). National Report of Disaster in Indonesia in 2017. Jakarta: BMKG.
Mikos, M., Arbanas, Z., & Sassa, K. (2017). Advancing Culture of Living with Landslides. Charm: Springer International Publishing.
Mondini, A., Santangelo, M., Rocchetti, M., Rossetto, E., Manconi, A., & Monserra, O. (2019). Sentinel-1 SAR Amplitude Imagery for Rapid Landslide Detection. Remote Sens.11, 760-785.
National Disaster Management Authority of Indonesia. (2016). Indonesia Disaster Database. Jakarta: BNPB Press.
National Disaster Management Authority of Indonesia. (2017). Disaster in Indonesia During 2017. Jakarta: BNPB.
Plank, S. (2014). Rapid Damage Assestment by Means of Multi Temporal SAR-A comprehensive review and Outlook to Sentinel-1. Remote Sens. 6, , 4870-4906.
Sassa, K. (2007). Landslide Science as a New Scientific Discipline. In K. Sassa, H. Fukuoka, F. Wang, & G. Wang, Progress in Landslide Science (pp. 3-12). Berlin: Srpinger Germany.
Sassa, K., Fukuoka, H., Wang, F., & Wang, G. (2007). Progress in Landslide. Berlin: Springer International Publishing.
Solari, L., Del Soldato, M., Montalti, R., Bianchini, S., Raspini, F., Thuegaz, P., . . . Casagli, N. (2019). A Sentinel-1 based hot-spot analysis: landslide mapping in north-western Italy. INTERNATIONAL JOURNAL OF REMOTE SENSING , VOL. 40, NO. 20, 7898-7921.
Team Sentinel-1. (2013). Sentinel-1 User Handbook. European Space Agency (ESA).
Tiwari, B., & Cepeda, J. (2014). Rain Induced Landslide. Landslide Science for a Safer Geoenvironment, Vol. 3, 271.
Vadher, P., & Dalal, N. (2018). Flood Inundation Mapping and Analysis Using SAR Data at Middle Reach of the Brahmaputra River. IJARIIE-ISSN(O) Vol-4 Issue-3, 785-793.
Wang, F., Konagai, K., Marui, H., mahdavifar, M., & Scrascia-Mugnozza, G. (2014). Earthquake-Induced Landslide. Landslide Science for a Safer Geoenvironment, Vol. 3, 137-140.
Woodhouse, I. (2006). Introduction to microwave remote sensing. . Boca Raton: CRC Press, Taylor & Francis Group .