| 研究生: |
王季豪 Chi-Hao Wang |
|---|---|
| 論文名稱: | On some problem in Arithmetic Dynamical System and Diophantine Approximation in Positive Characteristic |
| 指導教授: |
夏良忠
Liang-Chung Hsia 呂明光 Ming-Guang Leu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 動態系統 、標準高度函數 、丟翻圖逼近 |
| 外文關鍵詞: | dynamical system, canonical height, diophantine approximation |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這份博士論文研究的內容包含了三個部份,前二部分研究簇上函數疊代所引發的丟番圖問題,
第三個部份是有關於正特徵值函數體上丟番圖逼近的研究。
令 X 是一個 K-簇,並且在 X 上面給定一個半有限函數,
我們經由推廣動態多項式定義了在 X 上的推廣動態循環,
然後我們證明了在 X 上的推廣動態循環對於這個半有限函數是有效的。
第二部分是研究單項函數上的標準高度函數。
我們證明了在某些條件下,
單項函數上的標準高度函數不滿足 Northcott 有限性質。
針對這個問題,
我們定義了總和標準高度函數來修正它,
而且建立了幾個總和標準高度函數的基本性質,
特別來說,總和標準高度函數在適當條件下滿足 Northcott 有限性質。
最後一個部份是有關於正特徵值函數體上丟番圖逼近的研究。
古典丟番圖逼近是研究有理數可以多麼有效地逼近一個給定的無理實數,
在函數體上的逼近問題通常需要集合 I 的幫助,而 Lasjaunias 的研
究給出了集合 I 的定義。依此定義,本論文在這部份的研究給出了分
辨一個元素在正特徵值函數體上是否屬於集合 I 的準則。
There are three parts in this thesis.
The first two parts study Diophantine problems arising from iterations of maps on varieties.
The third part concentrates on a question in Diophantine approximations over function fields of positive characteristic.
Let X be a K-variety equipped with a quasi-finite morphism over K.
First we generalize the definition of dynatomic polynomials to define generalized dynatomic cycles on X.
And we show that the generalized dynatomic cycles are effective for quasi-finite morphisms on X.
The second part is a study of canonical height associated to monomial maps.
We show that, under certain conditions, the canonical height function associated to monomial maps does not satisfy the Northcott finiteness property.
To remedy such defect, we modify the definition of canonical height by introducing the total canonical height.
Then we establish several basic properties of the total canonical height.
In particular, we show that under certain mild conditions, the total canonical heights satisfy the Northcott finiteness property.
In the last part, we study a question about Diophantine approximation in positive characteristic.
Let $K = \FF_q(\theta)$ be the rational function field in variable $\theta$ over the finite field $\FF_q$.
Where q is a power of the prime number p.
Let $\alpha \in K_\infty := \FF_q((\frac{1}{\theta}))$ be an element algebraic over K.
We give an effective criterion for $\alpha$ being in Class I under certain conditions satisfied by $\alpha$.
[1] Francesco Amoroso and Roberto Dvornicich, A lower bound for the height in abelian extensions, J. Number Theory 80 (2000), no. 2, 260272.
[2] Antonia W. Bluher and Alain Lasjaunias, Hyperquadratic power series of degree four, Acta Arith. 124 (2006), no. 3, 257268.
[3] Gregory S. Call and Joseph H. Silverman, Canonical heights on varieties with morphisms, Compositio Math. 89 (1993), no. 2, 163205.
[4] David A. Cox, John Little, and Donal O’Shea, Using algebraic geometry, Second, Graduate Texts in Mathe-matics, vol. 185, Springer, New York, 2005.
[5] John P. D’Angelo, Several complex variables and the geometry of real hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993.
[6] Bernard de Mathan, Approximation exponents for algebraic functions in positive characteristic, Acta Arith. 60 (1992), no. 4, 359370.
[7] Tien-Cuong Dinh and Nessim Sibony, Upper bound for the topological entropy of a meromorphic correspon-dence, Israel J. Math. 163 (2008), 2944.
[8] Edward Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), no. 4, 391401.
[9] David S. Dummit and Richard M. Foote, Abstract algebra, Third, John Wiley & Sons Inc., Hoboken, NJ, 2004.
[10] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
[11] Charles Favre and Elizabeth Wulcan, Degree growth of monomial maps and McMullen’s polytope algebra, Indiana Univ. Math. J. 61 (2012), no. 2, 493524.
[12] William Fulton, Intersection theory, Second, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer-Verlag, Berlin, 1998.
[13] Walter Gubler, Höhentheorie, Math. Ann. 298 (1994), no. 3, 427455.
[14] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[15] Boris Hasselblatt and James Propp, Degree-growth of monomial maps, Ergodic Theory Dynam. Systems 27 (2007), no. 5, 13751397.
[16] Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction.
[17] Benjamin Hutz, Dynatomic cycles for morphisms of projective varieties, New York J. Math. 16 (2010), 125159.
[18] Benjamin Hutz, Eectivity of dynatomic cycles for morphisms of projective varieties using deformation theory, Proc. Amer. Math. Soc. 140 (2012), no. 10, 35073514.
[19] Shu Kawaguchi, Canonical height functions for ane plane automorphisms, Math. Ann. 335 (2006), no. 2, 285310.
[20] , Local and global canonical height functions for ane space regular automorphisms, Algebra Number Theory 7 (2013), no. 5, 12251252.
[21] Ellis R. Kolchin, Rational approximation to solutions of algebraic dierential equations, Proc. Amer. Math. Soc. 10 (1959), 238244.
[22] Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, vol. 231, Springer-Verlag, Berlin, 1978.
[23] Alain Lasjaunias, A survey of Diophantine approximation in elds of power series, Monatsh. Math. 130 (2000), no. 3, 211229.
[24] Alain Lasjaunias and Bernard de Mathan, Thue’s theorem in positive characteristic, J. Reine Angew. Math. 473 (1996), 195206.
[25] Robert Lazarsfeld, Excess intersection of divisors, Compositio Math. 43 (1981), no. 3, 281296.
[26] Chong Gyu Lee, An upper bound for the height for regular ane automorphisms of A n , Math. Ann. 355 (2013), no. 1, 116.
[27] Jan-Li Lin, Algebraic stability and degree growth of monomial maps, Math. Z. 271 (2012), no. 1-2, 293311.
[28] , On degree growth and stabilization of three-dimensional monomial maps, Michigan Math. J. 62 (2013), no. 3, 567579.
[29] Jan-Li Lin and Chi-Hao Wang, Canonical height functions for monomial maps, J. Number Theory 9 (2013), no. 7, 18211840.
[30] K. Mahler, On a theorem of Liouville in elds of positive characteristic, Canadian J. Math. 1 (1949), 397400.
[31] Ju. I. Manin, The Tate height of points on an Abelian variety, its variants and applications, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 13631390.
[32] W. H. Mills and David P. Robbins, Continued fractions for certain algebraic power series, J. Number Theory 23 (1986), no. 3, 388404.
[33] Patrick Morton, Arithmetic properties of periodic points of quadratic maps, Acta Arith. 62 (1992), no. 4, 343372.
[34] Patrick Morton and Pratiksha Patel, The Galois theory of periodic points of polynomial maps, Proc. London Math. Soc. (3) 68 (1994), no. 2, 225263.
[35] Patrick Morton and Joseph H. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461 (1995), 81122.
[36] AndrØ NØron, Quasi-fonctions et hauteurs sur les variØtØs abØliennes, Ann. of Math. (2) 82 (1965), 249331.
[37] Charles F. Osgood, An eective lower bound on the Diophantine approximation of algebraic functions by rational functions, Mathematika 20 (1973), 415.
[38] , Eective bounds on the Diophantine approximation of algebraic functions over elds of arbitrary characteristic and applications to dierential equations, Nederl. Akad. Wetensch. Proc. Ser. A 78 =Indag. Math.
37 (1975), 105119.
[39] Patrice Philippon, Sur des Hauteurs Alternatives. I, Math. Ann. 289 (1991), no. 2, 255283.
[40] K. F. Roth, Rational approximations to algebraic numbers, Fields Medallists’ lectures, 1997, pp. 6066.
[41] Wolfgang M. Schmidt, On Osgood’s eective Thue theorem for algebraic functions, Comm. Pure Appl. Math. 29 (1976), no. 6, 749763.
[42] , On continued fractions and Diophantine approximation in power series elds, Acta Arith. 95 (2000), no. 2, 139166.
[43] Jean-Pierre Serre, A Minkowski-style bound for the orders of the nite subgroups of the Cremona group of rank 2 over an arbitrary eld, Mosc. Math. J. 9 (2009), no. 1, 193208.
[44] , Local algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. Translated from the French by CheeWhye Chin and revised by the author.
[45] Joseph H. Silverman, Rational points on K3 surfaces: a new canonical height, Invent. Math. 105 (1991), no. 2, 347373.
[46] , The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007.
[47] , Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory and Dynamical Systems (2013), 132.
[48] Dinesh S. Thakur, Diophantine approximation exponents and continued fractions for algebraic power series, J. Number Theory 79 (1999), no. 2, 284291.
[49] Saburô Uchiyama, On the Thue-Siegel-Roth theorem. III, Proc. Japan Acad. 36 (1960), 12.
[50] JosØ Felipe Voloch, Diophantine approximation in characteristic p, Monatsh. Math. 119 (1995), no. 4, 321325.
[51] Shouwu Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281300.