跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊松霖
Sung-Lin Yang
論文名稱: 以週期性晶疇極化反轉鈦擴散鈮酸鋰波導晶片作為偏振可調定向耦合器之研究
Electro-Optically Switched Directional Couplers with Polarization-Mode Control in Periodically Poled Ti:LiNbO3 Waveguides
指導教授: 陳彥宏
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 鈮酸鋰鈦擴散波導定向耦合器偏振控制器
外文關鍵詞: PPLN EO PMC, Directional Coupler, Poling, waveguide
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功地利用鈮酸鋰晶體極化方向可被反轉的特性,將電控偏振可調的功能與電控定向耦合器以較簡單的電極設計整合於單一鈦擴散鈮酸鋰波導晶片上;其傳播損耗在波長1550nm下,可量測得到α_TM =0.166dB/cm、α_TE =1.65dB/cm。在波導間距為4.5μm、耦合區總長度為6mm、在六段交疊反轉式 的設計下,施加Z方向電壓200V時,將原始單段電極無法切換的耦合器成功達成切換功能;並展示出在元件結構誤差時,多段電極設計可能會使工作電壓降低,元件可以繼續運作,但若是設計不良時將會使得工作電壓上升很多。
    施加Y方向電場70V後,在45(_^o)C、元件長度6mm、濾波中心波長1555nm可進行偏振模態的轉換,最大轉換效率>99%,濾波頻寬約為5nm,其溫度對頻譜調變率為:dT⁄dλ=-0.8 nm⁄oC 。未來可將本研究中週期性極化反轉結構改成光參量震盪器(OPO)結構或超晶格結構(AOS)等其他積體元件以產生可調光源輸出,搭配其多樣化的功能發展強大且吸引人的主動式元件。


    We have designed, fabricated, and demonstrated a unique integrated PPLN switched directional couplers and polarization mode converters in Ti:LiNbO3 waveguides.
    A completely crossover coupling was obtained from such a device with a six-domain-inversion coupling section of 6mm long and a waveguide spacing of 4.5 μm when an external voltage of 200 V was applied along the crystal z axis. A completely crossover coupling can also be observed with other samples with single-domain and other multiple-domain-inversion configurations.
    We found in general, a device with higher number of domain inversions in the coupling section will have a less constraint on the coupling length for a completely crossover coupling and can perform more times of crossover couplings with EO tuning.
    We also successfully demonstrated the unique capability of this PPLN Ti:LiNbO3 waveguide device where the polarization mode and the directional coupling can be EO switched simultaneously or separately to increase its device functionality and applicability.

    目錄 摘要……………………………………………………………i 致謝…………………………………………………………iii 目錄…………………………………………………………iv 圖目 …………………………………………………………vi 表目…………………………………………………………ix 第一章 緒論 …………………………………………1 1.1 積體光學簡介……………………………………1 1.2 研究動機…………………………………………1 1.3 內容概要…………………………………………4 第二章 鈦離子擴散波導定向耦合器模型 2.1 波導模態橫向行為之基本分析…………………5 2.2 定向耦合器及耦合方程式………………………7 2.3 鈦擴散式模態分析與耦合長度計算……………11 2.4 設計耦合區域電極………………………………16 2.5 耦合區波導分岔角度設計………………………21 第三章 電光偏振轉換元件理論背景 3.1 鈮酸鋰晶體的電光效應原理……………………23 3.2 索爾克濾波器……………………………………27 3.3 電光准相位匹配元件……………………………29 第四章 電極設計與元件製作 4.1 電極設計…………………………………………35 4.2 鈦擴散定向耦合器製程…………………………37 4.3 極化反轉製………………………………………40 4.4 電極製程…………………………………………42 第五章 實驗與量測結果 5.1 波導特性量測……………………………………44 5.2 波導定向耦合器特性量測………………………46 5.3 多段電極式耦合器耦合特性量測 5.3.1 耦合區長度為耦合長度偶數倍…………………48 5.3.2 耦合區長度為耦合長度不為整數………………49 5.3.3 不適當的多段電極設計…………………………50 5.3.4 波導總能量隨電壓下降之分析…………………53 5.4 電光波長濾波器特性量測………………………56 5.5 元件同時進行耦合與偏振轉換…………………58 第六章 結論與未來展望 6.1 結論………………………………………………61 6.2 未來展望…………………………………………61 附錄A 稜鏡耦合儀與波導寬度設計……………………64 參考文獻 …………………………………………………67

    [1] S. E. miller, “Integrated Optics : an introduction ,” Bell. Syst. Tech. J., 48,
    p.2059-2069 ,1969
    [2] A. K. Srivastava, “1 Tb/s transmission of 100WDM 10Gb/s channels over 400km of
    TrueWave fiber,” OFC’98, PD10.
    [3] W.H. Zachariasen , and Skr. Norske Vid-Ada. , Oslo , Mat. Naturv. NO.4 ,1928
    [4] M.Papuchon, “Electrically switched optical directional coupler: Cobra” Appl. Phys. Lett.
    27, 289, 1975
    [5] H. Kogelnik, ”Switched directional couplers with alternating ” IEEE JQE,
    vol.QE-12 ,No.7, p.396-401, 1976
    [6] R. V. Schmidt, “Efficient optical waveguide switch/amplitude modulator” Opt. Lett.,
    vol.2, No.2, 1978
    [7] Scott A. Samson,”Two-Section Reversed Switch with Uniform Electrodes and
    Domain Reversal” IEEE PTL, vol.9, No.2,p197,1997
    [8] C.Y.Huang, ”Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and
    polarization mode converter” Opt. Express, vol.15, No.5, 2007
    [9] Yariv & Yeh “Optical waves in crystals” chap.11, p463, 2003
    [10] E.A.J. Marcatili “Dielectric rectangular waveguide and directional coupler for integrated
    optics” Bell system Tech. J, 48 ,2071 ,1969
    [11] Erwin Kreyszig ”Advanced Engineering Mathematics” , 9th edition ,chap.2, p56
    [12] S.K.Korotky, and W.J.Minford et.al “Mode size method for estimating the propagation
    constant of single-mode Ti:LiNbO3 strip waveguides” IEEE. JQE, vol. QE-18,
    No.18 ,1982
    [13] G.B.Hocker, and W.K.Burns “Mode dispersion in diffused channel waveguides by the
    refractive-index method” Appl. optics, vol.16, No.1, 1977
    [14] R.T.Hawkns ll and J.H.Goll “Method for calculating coupling length of Ti:LiNbO3
    waveguide directional couplers” J.of lightwave tech, vol.6, No.6, 1988
    [15] 黃俊育 “主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究” 國立中央
    大學光電工程所碩士論文 ,2006
    [16] M.Papuchon, Y.combemale, X.Mathieu, et.al “Electrically switched optical directional
    coupler: Cobra ” Appl. Phys. Lett. 27,289 ,1975
    [17] R. V.Schmidt, H. kogelnik “Electro-optically switched coupler with Δβ reversal using
    Ti-diffused LiNbO3 waveguides” Appl. Phys. Lett. 28,503 ,1976
    [18] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction
    ne, in congruent lithium niobate” Opt. Lett., vol.22, No.20, 1997
    [19] GJ Edwards, and M Lawrence “A temperature-dependent dispersion equation for
    congruently grown lithium niobate”, Optical and quantum electronics, vol.16, p373, 1984
    [20] Yariv & Yeh “Optical waves in crystals” chap.7, p232, 2003
    [21] D.A.Pinnow, and R.L.Abrams et.al “An electro-optic tunable filter” Appl. Phys. Lett.,
    34,15, 1979
    [22] X.Chen, and J.Shi et.al,“Electro-optic Solc-type wavelength filter in periodically poled
    lithium niobate”, Opt. Lett., 28, p2115-2117, 2003
    [23] D. Marcuse, “Optimal electrode design for integated optics modulators,” IEEE JQE, 18,
    p393-398, 1982
    [24] G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, W. Sohler,
    “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3
    waveguides using pulsed an cw pumping,” Appl. Phys. B, 73, p501-504 , 2001
    [25] L. H. Peng, Y. J. Shih, and Y. C. Zhang, “Restrictive domain motion in polarization
    switching of Lithium Niobate.” Appl. Phys. Lett., 81, p1666-1668 , 2002
    [26] Bor-Uei Chen, Antonio C. Pastor, and Hiroshi Shimizu , “Elimination of Li20
    out-diffusion waveguide in LiNbO3 and LiTaO3” Appl. Phys. Lett., 30, 11, 1977
    [27] Klyoshi Nakamura, and Haruyasu Ando, and Hiroshi Shimizu , “Ferroelectric domain
    inversion caused in LiNbO3 plates by heat treatment.” Appl. Phys. Lett., 50, 18, 1987
    [28] S. Forouhar, G. E. Betts, and W. S. C. Chang, “Effects of water vapor on modes in
    Ti-indiffused LiNbO3 planar waveguides,” Appl. Phys. Lett., 45, p207-209 ,1984
    [29] M. N. Armenise, M De Sario, C. Canali, P. Franzosi, J.Singh, R. H. Hutchins, and R. M.
    De La Rue, “In-plane scattering in titanium-diffused LiNbO3 optical waveguides,” Appl.
    Phys. Lett., 45, p326-328 ,1984
    [30] Y. Ishigame , T. Suhara , and H. Nishihara, “LiNbO3 waveguide
    second-harmonic-generation device phase matched with a fan-out domain-inverted
    grating,” Opt. Lett., 16, p375-377 ,1991
    [31] J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of
    laser diode light in a Lithium Niobate channel waveguide,” IEEE Photon Techonol. Lett.,
    1, p316-318 ,1989
    [32] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched
    LiNbO3 waveguide periodically poled by applying an external field for efficient blue
    second-harmonic-generation,” Appl. Phys. Lett., 62, p435-436 ,1993
    [33] Alan C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta, “Domain inversion in
    LiNbO3 using direct electron-beam writing” Appl. Phys. Lett., 60, p.2828-2830 ,1992
    [34] Yen-Chieh Hung, “Principles of nonlinear Optics” chap.8, p261, 2002
    [35] L. L. BUHL ,“Optical losses in metal/SiO2-clad Ti:LiNbO3 waveguide.” Electronics
    Lett., Vol.19 ,No.17,p.659-660,1983
    [36] R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators”
    Appl. Phys. B, 36, p143-147, 1985
    [37] M. D. Feit and J. A. Fleck, Jr. “Comparison of calculated and measured performance of diffused channel-waveguide couplers” J. Opt. Soc. Am. vol.73, No.10, 1983
    [38] R. C. Alferness, R. V. Schmidt, and E. H. Turner, “Characteristics of Ti-diffused lithium
    niobate optical directional couplers ” Appl.Opt. 18, p4012-4016, 1979
    [39] Ian A.White ,“Comparison of bending losses in integrated optical circuits” Opt. Lett.,vol.
    5, No.6,1980
    [40] Dietrich Marcuse, “Optimal Electrode Design for Integrated Optics Modulators” IEEE
    JQE, vol.QE-18 ,No.3, p.393-398, 1982
    [41] John J. Veselka and Steven K. Korotky “Optimization of Ti:LiNbO3 Optical Waveguides
    and Directional Coupler Switches for 1.56 μm Wavelength” IEEE JQE, vol.QE-22 ,No.6,
    p.933 ,1986
    [42] Y.W. Lee, et.al “Nonlinear multiwavelength conversion based on an aperiodic optical
    superlattice in lithium niobate” Opt. Lett. ,vol.27, No.24,2002
    [43] K. S. Chiang, “Construction of refractive index profiles of planar dielectric waveguides
    from distribution of effective indexed,” J.Lightwave Technol., LT-3, 2, p385-391,1985
    [44] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength
    dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion
    parameters,” J. Lightwave Technol., 5, p700-708, 1987
    [45] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for
    integrated optics” Bell. Syst. Tech. J., 48, p.2071-2102 ,1969
    [46] J.Sochtig, “DBR waveguide laser in erbium-diffusion-doped LiNbO3” Electronic letters,
    vol.31, No.7,1995

    QR CODE
    :::