跳到主要內容

簡易檢索 / 詳目顯示

研究生: 顏仲陵
Jung-Ling Yan
論文名稱: Takagi-Sugeno模糊控制系統之穩定度條件放寬與控制器設計
Relaxed Stability Conditions and Controller Design for Takagi-Sugeno Fuzzy Control Systems
指導教授: 莊堯棠
Yau-Tarng Juang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 英文
論文頁數: 107
中文關鍵詞: 穩定度放寬條件T-S 模糊控制系統
外文關鍵詞: relaxed stability conditions, T-S fuzzy control system
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非線性控制系統的穩定度判別是基於李亞普諾夫穩定準則(Lyapunov stability criterion),保證Takagi-Sugeno模糊控制系統穩定的充分條件,就是試圖找到一個共同正定矩陣P (common P)讓所有子系統皆滿足李亞普諾夫不等式(Lyapunov inequality),而控制器的設計方法多採用平行分配補償器(PDC)的概念,此方法稱之為共同二次李亞普諾夫函數(common quadratic Lyapunov function - CQLF)分析法,此共同正定矩陣P可透過MATLAB的線性矩陣不等式(LMI)控制工具箱的解法所求得,然而當模糊系統的規則數過多時,可能就無法找到這個共同正定矩陣P來符合所有子系統。
    為了放寬此穩定度條件的保守性,近年來許多學者提出了許多有別於尋找單一共同正定矩陣P的新方法來定義李亞普諾夫函數 (Lyapunov function),常見的有模糊二次李亞普諾夫函數(fuzzy quadratic Lyapunov function - FQLF)分析法、模糊線積分李亞普諾夫函數(fuzzy line-integral Lyapunov function - FLILF)分析法和切換式二次李亞普諾夫函數(switching quadratic Lyapunov function - SQLF)分析法來推導Takagi-Sugeno模糊控制系統的充份穩定度條件,理論上此三種穩定度條件會比傳統的條件寬鬆許多,因為傳統的穩定準則只是此三種方法的特例。
    由上述三種方法,我們可以藉由修改歸屬函數微分之絕對值上界的條件來放寬模糊二次李亞普諾夫分析法,另外藉由重建切換式Takagi-Sugeno模糊模型來放寬切換式二次李亞普諾夫函數分析法,最後則是結合模糊線積分李亞普諾夫函數分析法和切換式二次李亞普諾夫函數分析法兩大概念而推導出切換式模糊線積分李亞普諾夫函數分析法(switching fuzzy line-integral Lyapunov function - SFLILF),並以幾個例子來證明我們所提出的穩定度放寬條件的可行性。


    The stability condition of nonlinear control system is based on the Lyapunov stability criterion. That tried to find a single positive-definite matrix P (common P) to satisfy all Lyapunov inequalities. Then the sufficient stability condition of Takagi-Sugeno fuzzy control system (T-S fuzzy control system) can be guaranteed. Furthermore, the controller design is using the Parallel Distributed Compensation (PDC) concept. This analysis method is so-call common quadratic Lyapunov function (CQLF) method. We use the linear matrix inequality (LMI) Control Toolbox of MATLAB to seek for a common P. However, if the number of rules of a fuzzy system is large, the common P may not be found.
    In order to relax the conservative of stability conditions, recent years many researchers have proposed several approaches different from a single common P. There have three common methods which redefine the new Lyapunov function are fuzzy quadratic Lyapunov function (FQLF) method, fuzzy line-integral Lyapunov function (FLILF) method and switching quadratic Lyapunov function (SQLF). Theoretically, these three methods are more relaxed than traditional method; because of the traditional analysis method is just a special case of these three methods.
    By the above three methods, we can revise the condition that are time-derivatives of membership functions’ absolute values to relax the FQLF method. Besides, reconstruct the switching T-S fuzzy model to relax the SQLF method. Finally is unifies the FLILF method and SQLF method concept to derive the switching fuzzy line-integral Lyapunov function (SFLILF) method. The effectiveness of the proposed approach is shown through numerical examples.

    Abstract (Chinese) Ⅰ Abstract (English) Ⅱ Acknowledgement Ⅲ Table of Contents Ⅳ List of Figures Ⅶ Nomenclature Ⅸ Acronyms Ⅹ Chapter 1 Introduction 1.1 Motivations and Background 1 1.2 Literature Reviews 2 1.3 Organization 2 Chapter 2 Descriptions of Takagi-Sugeno Fuzzy Control Systems and Problem Formulations 2.1 Introduction 4 2.2 Takagi-Sugeno Fuzzy Control Systems and Its Stability Conditions 5 2.2.1 Takagi-Sugeno Fuzzy Model 5 2.2.2 Parallel Distributed Compensation 7 2.2.3 Stability Conditions Based on Common Quadratic Lyapunov Function 9 2.3 Problem Formulations 12 2.4 Summary 13 Chapter 3 Relaxed Stability Conditions and Controller Design based on Fuzzy Lyapunov Quadratic Function 3.1 Introduction 14 3.2 Stability Conditions based on Fuzzy Quadratic Lyapunov Function 15 3.2.1 Fuzzy Quadratic Lyapunov Function 16 3.2.2 Stability Conditions based on Fuzzy Quadratic Lyapunov Function 16 3.3 Relaxed Stability Conditions based on Fuzzy Quadratic Lyapunov Function 18 3.4 Controller Design based on Fuzzy Quadratic Lyapunov Function 26 3.5 Numerical Example 30 3.6 Summary 43 Chapter 4 Relaxed Stability Conditions and Controller Design based on Switching Lyapunov Function 4.1 Introduction 44 4.2 Switching Takagi-Sugeno Fuzzy Control Systems and Its StabilityConditions 46 4.2.1 Switching Takagi-Sugeno Fuzzy Model 47 4.2.2 Switching Quadratic Lyapunov Function 49 4.2.3 Stability Conditions based on Switching Quadratic Lyapunov Function 51 4.3 Stability Conditions based on Fuzzy Line-Integral Lyapunov Function 52 4.3.1 Takagi-Sugeno Fuzzy Model via Vertex Expression 52 4.3.2 Fuzzy Line-Integral Lyapunov Function 55 4.3.3 Stability Conditions based on Fuzzy Line-Integral Lyapunov Function 57 4.4 Relaxed Stability Conditions based on Switching Quadratic Lyapunov Function 57 4.4.1 Reconstruction of Switching Takagi-Sugeno Fuzzy Model via Vertex Expression 59 4.4.2Relaxed Stability Conditions based on Switching Quadratic Lyapunov Function 64 4.5 Relaxed Stability Conditions based on Switching Fuzzy Line-Integral Lyapunov Function 67 4.6 Controller Design based on Switching Fuzzy Line-Integral Lyapunov Function 73 4.7 Numerical example 74 4.8 Summary 87 Chapter 5 Conclusions and Feature Work 5.1 Conclusions 88 5.2 Feature Work 88 References 89

    [1] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and its Applications to Modeling and Control,” IEEE Trans. Syst., Man, Cybern. B, vol.SMC-15, no.2 pp.116-132, 1985.
    [2] M. Sugeno and G. T. Kang, ‘‘Fuzzy Modeling and Control of Multilayer Incinerator,” Fuzzy Sets and Syst., vol.18, no.3, pp. 329-346, 1986.
    [3] K. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy Control System,” Fuzzy Sets and Syst., vol.45, no.2, pp.135-156, 1992.
    [4] H. O. Wang, K. Tanaka, and M. F. Griffin, ‘‘Parallel Distributed Compensation of Nonlinear Systems by Takagi-Sugeno Fuzzy Model,’’ Proc. 4th IEEE Int. Fuzzy Syst.,Yokohama, Japan, pp.531-538, 1995.
    [5] K. Tanaka and H.O. Wang, Fuzzy Control Systems Design and Analysis:A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, 2001.
    [6] P. Gahinet, A. Nemirovski, A. Laub and M. Chilali, LMI control toolbox, The Math Works Inc., 1995.
    [7] K. Tanaka, T. Hori and H.O. Wang, “A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems,” IEEE Trans. Fuzzy Syst., vol.11, no.4, pp.582-589, 2003.
    [8] H.O. Wang, K. Tanaka and M.F. Griffin, “An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues,” IEEE Trans. Fuzzy Syst., vol.4, no.1, pp.14-23,1996.
    [9] K. Tanaka, T. Hori and H.O. Wang, “A Dual Design Problem via Multiple Lyapunov Functions,” Proc. 10th IEEE Int. Conf. Fuzzy Syst., Melbourne, Australia,pp.388-391, 2001.
    [10] K. Tanaka, T. Hori and H.O. Wang, “A Fuzzy Lyapunov Approach to Fuzzy Control System Design,” Proc. American Control Conf., Arlington VA, Washington CD, vol.6, pp.4790-4795, 2001.
    [11] K. Tanaka, T. Hori and H.O. Wang, “New parallel Distributed Compensation Using Time-Derivative Membership Functions: A Fuzzy Lyapunov Approach,” Proc. 40th IEEE Conf. Decision and Control, Orlando, FL, pp. 3942-3947, 2001.
    [12] M. Johansson, A. Rantzer and K. E. ?rz?n, “Piecewise Quadratic Stability of Fuzzy Systems,” IEEE Trans. Fuzzy Syst., vol.7, no.6, pp.713-722, 1999.
    [13] H. Ohtake, K. Tanaka and H.O. Wang, “Switching Fuzzy Controller Design Based on Switching Lyapunov Function for a Class of Nonlinear Systems,” IEEE Trans. Syst.,Man, Cybern. B, vol.36, no.1, pp.13-23, 2006.
    [14] J.M. Zhang, R.H. Li and P.A. Zhang, “Stability Analysis and Systematic Design of Fuzzy Control Systems,” Fuzzy Sets and Syst., vol.120, no.1, pp.65-72, 2001.
    [15] Z.H. Xiu and G. Ren, “Stability Analysis and Systematic Design of Takagi-Sugeno Fuzzy Control Systems,” Fuzzy Sets and Syst., vol.151, no.1 pp.119-138, 2005.
    [16] W.J. Wang, Y.J. Chen and C.H. Sun, “Relaxed Stabilization Criteria for Discrete-Time T-S Fuzzy Control Systems Based on a Switching Fuzzy Model and Piecewise Lyapunov Function,” IEEE Trans. Fuzzy Syst., vol.37, no.3, pp.551-559, 2007.
    [17] B.J. Rhee and S. Won, “A New Fuzzy Lyapunov Function Approach for a Takagi-Sugeno Fuzzy Control System Design,” Fuzzy Sets and Syst., vol.157, no.11 pp.1211-1228, 2006.
    [18] W.J. Wang, Y.J. Chen and C.H. Sun, “A Relaxed Stability Criterion for T-S Fuzzy Discrete Systems,” IEEE Trans. Syst., Man, Cybern. B, vol.34, no.5, pp.2155-2158, 2004.
    [19] W.J. Wang, Y.J. Chen and C.H. Sun, “An Improved Stability Criterion for T-S Fuzzy Discrete Systems via Vertex Expression Discrete Systems,” IEEE Trans. Syst., Man, Cybern. B, vol.36, no.7, pp.672-678, 2006.
    [20] J. Li, S. Zhou, and S. Xu, “Fuzzy Control System Design via Fuzzy Lyapunov Functions,” IEEE Trans. Syst., Man, Cybern. B, vol.38, no.6, pp.1657-1661, 2008.
    [21] J.C. Geromel and R.H. Korogui, “Analysis and Synthesis of Robust Control Systems Using Linear Parameter Dependent Lyapunov Functions,” Automatic Control, IEEE Trans., vol.51, no.12, pp.1984-1989, 2006.
    [22] K. Tanaka, H. Ohtake and H.O. Wang, “A Descriptor System Approach to Fuzzy Control System Design via Fuzzy Lyapunov Functions,” IEEE Trans. Fuzzy Syst., vol.15, no.3, pp. 333-341, 2007.
    [23] M.C. de Oliveira, J. Bernussou and J.C. Geromel, “A new discrete-time robust stability condition,” Syst. & Control Letters, vol.37, pp. 261-256, 1999.
    [24] V. N. Phat and P. T. Nam, “Exponential Stability and Stabilization of Uncertain Linear Time-Varying Systems Using Parameter Dependent Lyapunov Function,” Int. Journal of Control, vol.80, no.8, pp. 1333-1341, 2007.
    [25] C-W Chen, W-L Chiang, C-H Tsai, C-Y Chen and Morris H. L. Wang, “Fuzzy Lyapunov Method for Stability Conditions of Nonlinear Systems,” Int. Journal on Artificial Intelligence Tools, vol. 15, No. 2, pp163-171, 2006.
    [26] I. Abdelmalek, N. Golea and M. L. Hadjili, “A New Fuzzy Lyapunov Approach to Non-Quadratic Stabilization of Takagi-Sugeno Fuzzy Models,” Int. J. Appl. Math. Comput. Sci., vol. 17, no.1, pp39-51, 2007.
    [27] K. Tanaka, M. Iwmaki, and H.O. Wang, “Stable Switching Fuzzy Control and Its Application to a Hovercraft Type Vehicle,” Int. fuzzy syst. Conf., pp.804-809, 2000.
    [28] J. Dong and G-H Yang, “A New Multiple Lyapunov Function Approach to Synthesis of Fuzzy Control Systems,” Conf. on Ind. Electronics and Applications, pp2284-2289,2007.
    [29] K. Tanaka, H. Ohtake and H.O. Wang, “A Descriptor System Approach to Fuzzy Control System Designs using Fuzzy Lyapunov Function,” American Control Conf., pp.4367-4372, 2006.
    [30] K. Tanaka, M. Iwmaki, and H.O. Wang, “Stability and Smoothness Conditions for Switching Fuzzy Systems,” American Control Conf., pp.2474-2478, 2000.
    [31] M. Feng and C. J. Harris, “Piecewise Lyapunov Stability Conditions of Fuzzy Systems,” IEEE Trans. Syst., Man, Cybern. B, vol.31, no.2, pp.259-262, 2001.
    [32] D. J. Choi and P. Park, “State-Feedback Controller Design for Discrete-Time Switching Fuzzy Systems,” Proc. 41th IEEE Conf. on Decision and Control, Las Vegas, Nevada USA, pp.191-196, 2002.
    [33] L.K. Wong, F.H.F. Leung and P.K.S. Tam, “Lyapunov Function-Based Design of Fuzzy Logic Controllers and its Application on Combining Controllers,” IEEE Trans.Ind.. Electron., vol. 45, no. 3, pp. 502-509, 1998.
    [34] K. Tanaka and M. Sugeno, “Stability Analysis of Fuzzy Systems Using Lyapunov’s Direct Method,” Proc. NAFIPS’90, Toronto, on, Canada, pp. 133-136, 1990.
    [35] M. Sugeno, “On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents,” IEEE Trans. Fuzzy Syst., vol. 7, pp. 201-224, 1999.
    [36] H. K. Khalil, Nonlinear Systems, third ed., Upper Saddle River, NJ: Prentice-Hall, 2002.
    [37] S. Singh, “Stability Analysis of Discrete Fuzzy Fontrol Systems,” Proc.1st IEEE Int. Conf. Fuzzy Syst., San Diego, CA, Mar. pp.527-534, 1992.
    [38] S. G. Cao, N. W. Rees, and G. Feng, “Analysis and Design of a Class of Continuous Time Fuzzy Control Systems,” Int. J. Control, vol. 64, pp.1069-1087, 1996.
    [39] K. Tanaka, T. Ikeda, and H. O. Wang, “Robust Stabilization of a Class of Uncertain Nonlinear System via Fuzzy Control,” IEEE Trans. Fuzzy Syst., vol.4, pp.1-13, 1996.
    [40] C.L. Chen et al., “Analysis and Design of Fuzzy Control Systems,” Fuzzy Sets Syst., vol.57, pp.125-140, 1993.
    [41] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Syst., Man, and Cybern., vol. 3, pp.28-44, 1973.
    [42] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, pp.250- 265,1998.
    [43] H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear matrix inequality techniques in fuzzy control system design,” IEEE Trans. Fuzzy Syst., vol. 9, pp. 324-332, 2001.
    [44] E. Kim, and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 8, pp. 523-533, 2000.

    QR CODE
    :::