| 研究生: |
李宗彥 Tsung-Yen Lee |
|---|---|
| 論文名稱: |
都市垃圾焚化飛灰熔渣粉體對不同型態水泥之卜作嵐反應行為 The Pozzolanic Reaction Effect of the MSWI Slag on the Different Types of Cement |
| 指導教授: |
王鯤生
Kuen-Sheng Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 249 |
| 中文關鍵詞: | 焚化飛灰 、熔融 、單礦物 、五型別水泥 、卜作嵐反應 |
| 外文關鍵詞: | MSWI fly ash slag, melting, cement constituent |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗結果顯示,熔渣可降低矽酸三鈣與鋁酸三鈣水化放熱之溫度。而由DTA分析結果顯示,熔渣可延緩鋁酸三鈣由六方相C4AH13轉為立方相C3AH6之時間,且晚期以穩定之立方相C3AH6為主。另外由XRD分析結果顯示,熔渣矽酸三鈣與熔渣矽酸二鈣漿體於養護晚期(60∼90天),因卜作嵐反應消耗CH生成CSH膠體與CAH鹽類,且熔渣成分中以Si2+、Al3+對矽酸三鈣之卜作嵐反應影響較大,且熔渣可減緩石膏與鋁酸三鈣形成AFt與AFm之機會,可延緩鋁酸三鈣之初期水化。由NMR分析結果顯示,熔渣矽酸三鈣初期水化程度具延緩之趨勢,而晚期因卜作嵐反應則呈現加速之趨勢,此外,熔渣矽酸三鈣漿體之聚矽陰離子長度隨齡期增而有增加之趨勢,且較純矽酸三鈣漿體為長。五型別熔渣水泥漿體之抗壓強度,於養護早期隨熔渣取代量之增加而減小,晚期強度則呈明顯上升之趨勢;且熔渣取代量(10%、20%)者超越或接近各型純水泥;而以MIP分析結果得知,孔隙分布由毛細孔隙轉換成膠體孔隙,而總孔隙體積與毛細孔隙體隨齡期之增加而逐漸減少,且膠體孔則隨齡期之增加而有增加之趨勢,顯示熔渣晚期具卜作嵐反應特性,可提高晚期強度。
This study investigated the pozzolanic reactions and engineering properties of slag blended cements (SBC). In this work, SBCs were prepared by blending slag, which was generated from the melting of municipal solid waste incinerator fly ash (referred to as MSWFS), with five types of cements, respectively. Major cement constituents such as C3S (i.e., 3CaO.SiO2) and C3A (i.e., 3CaOAl2O3) were also used alternatively in replacement of cement for contrast. The experiments were divided into three parts: (1) characterization of the slag prepared by melting the MSW incinerator fly ash at 1400℃ for 30 min; (2) assessment of the pozzolanic reaction in the SBC pastes incorporating C3S and C3A with blend ratio ranged from 10% to 40% at various curing ages; and (3) evaluation of the effects of slag on pozzolanic reaction in the SBC pastes for five cements at various curing ages, focusing on their compressive strength, hydration heat behavior, hydration degree, crystalline speciation, and variation of microstructure.
The results showed that lower hydration heat of C3S and C3A samples with the incorporation of MSWFS was observed, possibly due to the partial replacement of the mineral constituents by the slag with less activity. In general, the incorporation of slag into C3S and C2S, respectively, decreased the initial hydration reaction whereas increased the pozzolanic reaction at later stage by consuming CH to form CSH and CAH. This was evidenced by the DTA results, which showed a delayed transformation of C3A from C4AH13 to C3AH6. Moreover, hydration degree and the average length of C-S-H, (i.e., the number of Si of linear poly silicate anions in C-S-H gel, Psi) as determined by applying nuclear magnetic resonance (NMR) techniques also indicated a delayed initial hydration and an enhanced later pozzolanic reaction. In the C3S-slag paste, the Psi value increased with increasing curing age as compared with that of the C3S paste. The results of x-ray powder diffractometer (XRPD) revealed that the pozzolanic reaction in C3S-slag paste was mainly affected by the Si2+ and Al3+ released by the slag. On the other hand, the incorporation of slag delayed the initial hydration of C3A in C3A-slag paste, and decreased the formation of ettrigite (AFt) and monosulfoaluminate (AFm) in C3A-gypsum-slag paste.
The early unconfined compressive strength (UCS) of SBC pastes for five types of cement were found to decreased with increasing slag blend ratio, whereas the later strength increased. In addition, the UCS for all types of SBC pastes tested with slag blend ratio<20% outperformed that of their pastes without slag. Moreover, the results of mercury intrusion porosimetry (MIP) analysis indicated that the total and the capillarity pore volume decreased with increasing ages, whereas the gel pore volume increased, showing the later pozzolanic nature of the pulverized fly ash slag.
王鯤生、黃尊謙,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2000)。
王鯤生、張君偉,「水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性之影響」,碩士論文,國立中央大學環境工程研究所,中壢(2000)。
王鯤生、張木彬,「高溫熔融處理事業廢棄物焚化灰燼之減量、經濟性及資源再利用之研究」,期末報告,榮民工程事業管理處,(1997)。
王鯤生、蕭炳欽,「都市垃圾灰渣與下水污泥灰渣共同高溫熔融處理操作溫度特性之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1993)。
王鯤生、張旭彰,「都市垃圾焚化灰渣熔融處理操作特性之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1992)。
黃兆龍,「混凝土性質與行為」,詹式書局,(1997)。
黃兆龍、蔡宗勳,「水泥型別對優生混凝土性質影響之研究」,碩士論文,國立台灣工業技術學院,台北(1997)。
黃兆龍,沈得縣,「高爐熟料與飛灰之卜作嵐反應機理及對水泥漿體巨微觀性質影響之研究」,博士論文,國立台灣工業技術學院,台北(1991)。
黃兆龍,林利國,「稻殼灰性質與混凝土材料上之利用」,碩士論文,國立台灣工業技術學院,台北(1989)。
李釗、郭文田,「添加強塑劑對水泥材料水化及早期行為之影響」,博士論文,國立中央大學土木工程研究所,中壢(2000)。
林寶玉、吳紹章,「新材料設計與施工」,中國水利水電出版社,中華人民共和國,(1998)。
江舜元、許貫中,「以29Si NMR探討強塑劑對水泥水化行為之影響」,土木水利,第十卷,第二期,第341-349頁(1998)
彭耀南、林維明,「蒸汽催化水泥單礦物之水化機理」,博士論文,國立交通大學土木工程研究所,新竹(1997)。
趙文成、劉卓奇「水泥組成成分與氯離子關係之研究」,碩士論文,國立交通大學土木工程研究所,新竹(1997)。
陳重男、林建中及林秋國「水泥與水泥卅不飽和聚酯復合體固定化鉻之機制」,博士論文,國立交通大學土木工程研究所,新竹(1997)。
楊金鐘、吳裕民,「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,43,台北(1996)。
顧順榮、鍾昀泰、張木彬,「台灣地區都市垃圾焚化灰份中重金屬濃度及TCLP溶出之評估」,第十屆廢棄物處理技術研討會論文集,271,台南(1995)。
歐陽嶠暉、詹孟贇,「都市下水污泥熔渣細骨材利用可行性之探討」,碩士論文,國立中央大學環境工程研究所,中壢(1995)。
廉慧珍、童良,「建築材料物相研究基礎」,清華大學出版社,中華人民共和國,(1995)。
祝永年、沈威、陳志源,「混凝土結構、性能及材料」,同濟大學出版社,中華人民共和國,(1988)。
Alba, N., S. Gasso, and J. M. Baldasano, “Characterization of Municipal Solid Waste Incineration Residues from Facilities with Different air Pollution Control Systems,” Journal of the Air & Waste Management Association, 47, 1170(1997).
Brooksd, J. J., M. A. Megat Johari, and M. Mazloom, “Effect of Admixtures on The Setting Times of High-Strength Concrete,” Cement & Concrete Composites, Vol. 22, No. 2, pp. 293-301(2000).
Chengzhi, Z., W. Aiqin, and T. Mingshu, “The Filling Rolf of Pozzolanic Material,” Cement and Concrete Research, Vol. 26, No. 2, pp. 943-947 (1996)
Chern, J. C., and Y. W. Chan, “Effect of Temperature and Humidity Condition on the Strength of Blast-Furnace Slag Cement Concrete,” Vol. 14, No. 2, pp. 1377-1397 (1989).
Chou, K. S., and G. Burnet, “Formatiom of Calcium Aluminaters in The Lime-Sinter Process. PartⅠ. Qualitative Studies,” Cement and Concrete Research, Vol.12, No. 2, pp. 57-63 (1980).
Cong, X., and R. J. Kirkpatrick., “29Si MAS NMR Study of Structure of Calcium Silicate Hydrate,” Advn Cement Bas Mat, Vol. 2, No. 2, pp. 144-156 (1980).
Curcio, F., B. A. Deangelis, and S. Pagliolico, “Metakaolin as A PozzOlanic Microfiller for High-Performance Mortars,” Cement and Concrete Research, Vol. 28, No. 6, pp. 803-809 (1998).
Danielle, S. K., and A. Ray, “The Use Of DTA/TGA to Study The Effects of Ground with Different Surface Areas in Autoclaved Cement : Quartz Pastes,” Thermochimica Acta, 306, pp. 159-165(1997).
Daube, J., and R. Bakker, “Portland Blast-furnace Slag Cement: A Review,” ASTM STP 897, pp. 5-14 (1986).
Douglas, E., and R. Zerbino, “Characterization of Granulated and Pelletized Blast Furnace Slag,” Cement and Concrete Research, Vol. 16, No. 2, pp. 662-670 (1986).
Eighmy, T. T., J. D. Eusden, and J. E. Krzanowski, “Comprehensive Approach toward Understanding Element Speciation and Leaching Behavior in Municipal Solid Waste Incineration Electrostatic Precipitator Ash,” Environmental Science & Technology, Vol. 29, No. 3, 629(1995).
Freidin, C., “Hydration and Strength Development of Binder Based on High-Calcium Oil Shale Fly Ash,” Cement and Concrete Research, Vol.28, No. 6, ppm. 829-839 (1998).
Herbert, I. H., L. P. Arthur, and S. D. Roger, “ASME/US Bureau of Mines Investigative Program on Vitrification of Combustion Ash Residue: Findings and Conclusion,” Journal of Hazardous Materials, Vol. 47, No.3, pp. 369-381 (1996).
Irassar, E. F., A. D. Maio, and O. R. Batic, “Sulfate Attack on Concrete With Mineral Admixtures,” Cement and Concrete Research, Vol. 26, No. 1, pp. 113-123 (1996).
Jambor, J., “Influence of Phase Composition of Hardened Binder Pastes on Its Pore Structure and Strength,” Proceedings of The Conference on Pore Structure and Properties of Materials, Prague. Vol. 11, No. 3, pp. D75-D76 (1973).
Jean, P., Assefa. Wolde, and M. Chabannet, “Hydraulic Activity of Slags Obtained by Vitrification of Wastes,” ACI Materials Journal, Vol. 93, No. 6, November-December, (1996).
Jun-Yuan, H., and B. E. Scheetz, and D. M. Roy, “Hydration of Fly Ash-Portland Cements,” Cement and Concrete Research, Vol. 17, No. 2, pp. 505-511 (1983).
Katz, A., “Microscopic Study of Alkli-Activated Fly Ash,” Cement and Concrete Research, Vol. 28, No. 2, pp. 197-208 (1997).
Li, D., J. Shen, Y. Chen, L. Cheng, and X. Wu, “Study of Properties on Fly Ash-Slag Complex Cement,” Cement and Concrete Research, Vol. 30, No. 3, pp. 1381-1387 (2000).
Luiz, R. P., H. S. Armellin, and P. Helene, “Interaction between Accelerating Admixtures and Portland Cement for Shotcrete: The Influence of the Amixture’s Chemical Base and the Correlation between Paste Tests and Shotcrete Performance,” ACI Materials J. ( 1996)
Lane.D.S., and C. Ozyildirim, “Preventive Measures for Alkali-Silica Reactions (Binary and Ternary Systems),“ Cement and Concrete Research Vol. 29, No. 2, pp. 1281-1288 (1999).
Maltais, Y., and J. Marchand, “Influence of Curing Temperature on Cement Hydration and Mechanical Strength Development of Fly Ash Mortars,” Cement and Concrete Research , Vol. 27, No. 7, pp. 1009-1020 (1997).
Marsh, B. K., and R. L. Day, “Pozzlanic and Cementitious Reactions of Fly Ash in Blended Cement Pastes,” Cement and Concrete Research , Vol. 18, No. 3, pp. 301-310 (1987).
Medhat, H., D.A. Michael, and F. Roland, “The Effects of Fly Ash Composition on The Chemistry of Pore Solution in Hydrated Cement Pastes,” Cement and Concrete Research, Vol. 29, No. 3, pp. 1915-1920 (1999).
Mehta, P. K., “Pozzolanic and Cemenitious Reaction of Fly Ash in Blend Cement Pastes,” Cement and Concrete Research, Vol. 18, No. 3, pp. 301-310 (1988).
Moises, F., and C. Joseph, “Pozzolanic and Cemenitious Reaction of Fly Ash in Blend Cement Pastes,” Cement and Concrete Research, Vol. 18, No. 3, pp. 301-310 (1988).
Moises, F., and C. Joseph, “Pore Size Distribution And Degree of Hydration of Metakaolin-Cement Pastes,” Cement and Concrete Research, Vol. 30, No. 2, pp. 561-569 (2000).
Moropoulou, A., A. Bakolas, and K. Bisbikou, “Characterization of Ancient, Byzantine and Later Historic Mortars By Thermal And X-ray Diffraction Techniques,” Thermochimica Acta, 269/270. pp. 779-795 (1995)
Odler, I., and J. Schuppstuhl, “Combined Hydration of Tricalcium Silicate and β-Dicalcium Silicate,” Cement and Concrete Research, Vol. 12, No. 1, pp. 13-20 (1982).
Odigure, J. O., “Mineral Composition and Microstructure of Clinker From Raw Mix Containing Metallic Particles,” Cement and Concrete Research, Vol. 26, No. 6, pp. 841-849 (1996).
Ogawa, K., H. Uchikawa, and K. Takemoto, “The Mechanism of The Hydration In The System C3S-Pozzolana,” Cement and Concrete Research, Vol. 10, No. 5, pp. 683-696 (1980).
Ontiveros, J. T., T. L. Clapp, and D. S. Kosson, “Physical Properties and Chemical Species Distributions Within Municipal Waste Combuster Ashes,” Environmental Progress, Vol. 8, No. 3, pp. 150-200(1989).
Philleo, R. E., “ Slag or Other Supplementary Materials,” ACI SP-114, pp. 1197-1207 (1989).
Palomo, A., and M. T. Blanco, “Alkali-Activated Fly Ash A Cement for The Future,” Cement and Concrete Research, Vol. 29, No. 2, pp. 1323-1329 (1999).
Richardson, I. G., and J. G. Cabrera, “The Nnature of CSH in Model Slag-cements,” Cement and Concrete Composites, Vol. 22, No. 2, pp. 259-266 (2000).
Roy, D.M., and K. M. Parker, “Microstructures and Properties of Granulated Slag-Portland cement Blends at Normal and Elevated Temperatures,” CI Journal Proceedings, Vol. 79, No 3, pp. 397-414 (1983)﹒
Roy, D. M., and G. M. ldorn, “ Hydration Structure and Properties of Blast-furnace Slag Cements, Mortars and Concrete,” ACI Journal Proceedings, Vol. 79, No. 3, pp. 444-457 (1982).
Sanchez, M. I., and M. Frias, “The Pozzolanic Activity of Different Materials, Its Influence On The Hydration Heat In Mortars,” Cement and Concrete Research, Vol. 26, No. 2, pp. 203-213 (1996).
Schlorholtz, S., T. Demirel, and J. M. Pitt, “An Examination of The ASTM Lime Pozzolanic Activity Test For Class C Fly Ashes,” Cement and Concrete Research, Vol. 17, No. 3, pp. 499-504 (1983).
Shi, C., and R. L.Day, “Pozzolanic Reaction in the Presence of Chemical Activators Pare Ⅱ Reaction Products and Mechanism,” Cement and Concrete Research, Vol. 30, No. 4, pp. 607-613(1996).
Shi, C., “Early Microstructure Development of Activated Lime-Fly Ash Pastes,” Cement and Concrete Research, Vol. 26, No. 9, pp. 1351-1359 (1996).
Urhan, S., “Alkali Silica And Pozzolanic Reactions In Concrete. Part 1: Interpretation Of Published Results And An Hypothesis Concerning The Mechanism,” Cement and Concrete Research, Vol.17, No. 1, pp. 153-160 (1987).
Vagelis, G. P., “Effect of Fly Ash on Portland Cement Systems Part1. Low-Calcium Fly Ash,” Cement and Concrete Research, Vol. 29, No. 8, pp. 1727-1736 (1999).
Wang, S. W., and K. L. Scrivener, “Hydration Products of Activated Slag Cemenr,” Cement and Concrete Research, Vol. 25, No. 3, pp. 561-571 (1995).
Wu, X., D. M. Roy, and C. A. Langton, “Early Stage Hydation of Slag-Cement,” Cement and Concrete Research, Vol. 13, No. 3, pp. 277-286 (1983)﹒
Xi, Y., D. D. Siemer, and B. E. Scheetz, “Strength Development, Hydration Reaction and Pore Structure of Autoclaved Slag Cement with Added Silica Fume,” Cement and Concrete Research, Vol. 17, No. 1, pp. 75-82 (1996)﹒
Xiuji, F., and L. Shizong, “Research of Positron Annihilation and Hydration of Doped β-C2S,” Cement and Concrete Research, Vol. 17, No. 3, pp. 532-538 (1987).
Young, J. E., “The Microstructure of Hardened Protland Cement Pastes,” Edited by Bazant, Z. P. and Witlman, F. H., (1986).
Zivko, S., P. Svetlana, and D. Mirjana, “Mechanical Activation of Cement with Addition of Fly Ash,” Materials Letters, Vol. 39, No. 2, pp. 115-121 (1999).
Zhang, M. H., R. Lastra, and V. N. Malhotra, “Rice-Husk Ash paste And Concrete: Some Aspects of Hydration and The Microstructure of The Interfacial Zone Between The Aggregare And Paste,” Cement and Concrete Research, Vol. 26, No. 6, pp. 963-977(1996).