| 研究生: |
顏巨倫 Chu-Lun Yen |
|---|---|
| 論文名稱: |
二苯乙烯二胺分子與Pentiptycene-乙炔寡聚物的合成與物理性質之研究 The Synthesis and Physical Properties of Diaminostilbenes and Pentiptycene-ethynylene Oligomers |
| 指導教授: |
楊吉水
Jye-Shane Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 二苯乙烯二胺 、電致發光 、光激發光 、化學感應器 |
| 外文關鍵詞: | quantum yields, Pentiptycene, OLED |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中 文 摘 要
本論文主要以合成非平面性共軛分子以作為有機發光材料之應用。
我們首先合成系列一化合物1-A、1-B與1-C,以確定此類二苯乙烯二胺分子在有機溶劑中具有高螢光量產率(如在THF中為0.55~0.76),於是透過結構上的修飾引入立體性大的triptycene基團,而設計出系列二化合物。系列二化合物在二氯甲烷中的發光範圍為429~441 nm,熱裂解溫度介於325~375℃,玻璃轉移溫度介於80~120℃,HOMO能階介於5.00~5.17,LUMO能階介於1.98~2.22。其中以化合物2-C(441 nm)的光色最接近藍光且熱穩定性最佳,此外,化合物2-C的能階最能搭配陽極(ITO)與電子傳輸層(TPBI),推測合適的元件結構為ITO/ NPB/ 2-C/ TPBI/ Mg:Ag。
另外,我們亦藉由乙炔基將pentiptycene串聯起來而設計出系列三化合物,同樣利用其非平面性以期在固態中仍具高螢光量子產率。在合成系列三化合物中,由於pentiptycene本身立體因素的影響,故合成條件控制較嚴苛,包括正丁基鋰的當量數、反應時間和溫度、還原劑的選擇皆會影響產率,目前已合成3-A與3-B,未來將找尋最佳條件合成3-C與3-D。
Abstract
This thesis reports the synthesis of a few nonplanar conjugated molecules as organic light-emitting materials. We first synthesized diaminostilbenes 1-A, 1-B, and 1-C to ensure that these fluorophores would have high fluorescence quantum yields in organic solvents. We then introduce the bulky triptycene group to these diaminostilbenes to form the compound series II (2-A, 2-B, and 2-C). The fluorescence maxima in dichloromethane, decomposition temperatures, glass transition temperatures, the HOMO energies, and the LUMO energies of compounds 2 are in the range of 429-441 nm, 325-375 oC, 80-120 oC, 5.00-5.17 eV, and 1.98-2.22 eV, respectively. Among the three compounds, 2-C has the best physical properties as a blue emitter, and a reasonable OLED device structure for such a purpose would be ITO/NPB/2-C/TPBI/Mg:Ag, where NPB and TPBI are hole and electron transporting materials, respectively. We also have designed a series of pentiptycene-ethynylene oligomers (compound series III) on the basis of the known feature that the nonplanar pentiptycene-incorporated poly(phenylene ethynylene)s can maintain a high fluorescence quantum yields in the solid state. However, the bulky pentiptycene group complicates the synthesis, which requires a subtle control of the reaction conditions, including the amount of butyl lithium, reaction time and temperature, and the choice of reducing reagents. We have currently synthesized 3-A and 3-B, and will find the optimum conditions to prepare oligomers 3-C and 3-D.
參考資料:
(1) Holmes, A. B.; Synth. Met. 1993, 4031.
(2) Veazey, R. Z.; Nieman, T. A.; Anal. Chem.; 1979, 51, 2092. Klopf, L. L.; Nieman, T. A.; Anal. Chem.; 1985, 57, 46.
(3) Skoog, D. A.; Holler, E. J.; Nieman, T.A., Principles of Instrumental Analysis, 5th ed.; Saunders College Publishing; 1998; 355.
(4) Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W.; Adv. Mater. 2000, 12, No. 23, 1737.
(5) Bernanose, A.; Comte, M.; Vouaux, P.; J. Chim. Phys. 1953, 50, 64.
(6) Bernanose, A.; Vouaux, P.; J. Chim. Phys. 1953, 50, 261.
(7) Bernanose, A.; J. Chim. Phys. 1955, 52, 396.
(8) Bernanose, A.; Vouaux, P.; J. Chim. Phys. 1955, 52, 509.
(9) Pope, M.; Kallman, H.; Magnante, P.; J. Chem. Phys. 1963, 38, 2042.
(10) Digby, W.; Schadt, M.; US Patent 3 621 321, 1971.
(11) Partridge, R.; US Patent 3 995 299, 1976.
(12) Roberts, G. G.; McGinnity, M. M.;Barlow, W. A.; Vincett, P. S.; Solid State Commun. 1979, 32, 683.
(13) Tang, C.; US Patent 4 164 431, 1979.
(14) Tang, C.; US Patent 4 356 429, 1982.
(15) Tang, C.; VanSlyke, S.; Appl. Phys. Lett. 1987, 51, 914.
(16) Burroughes, J.; Bradley, D.; Brown, A.; Marks, R.; Mackay, K.; Friend, R.; Burn, P.; Holmes, A.; Nature. 1990, 347, 539.
(17) Braun, D.; Heeger, A.; Appl. Phys. Lett. 1991, 58, 1982.
(18) Heeger, A.J.; Braun, D.; Chem. Abstr. 1993, 118, 1574.
(19) Wadl, G.; Allemand, P. M.; Srdanov, G.; McBranch, D.; ACS. Symp. Ser. 1991, 455.
(20) Wudl, F.; Chem. Abstr. 1993, 118, 255575.
(21) Ohmori, Y.; Uchida, K.; Muro, K. Yoshino, K.; Jpn. J. Appl. Phys. 1991, 30, 1941.
(22) Peng, Z.; Galvin, M. E.; Chem. Mater. 1998, 10, 1785.
(23) Yang, J. –S.; Swager, T. M.; J. Am. Chem. Soc. 1998, 120, 11864.
(24) Skvarchenko, V. R.; Shalaev, V. K.; Klabunovskii, E. I.; Russian Chemical Reviews. 1974, 43 (11), 951.
(25) Clar, E.; Chem. Ber. 1931, 64, 1676.
(26) Bartlett, P. D.; Ryan, M. J.; Cohen, S. G.; J. Am. Chem. Soc. 1942, 64, 2649.
(27) Skvarchenko, V. R.; Shil’nikova, A. G.; Levina, R. Ya., Zhur.; Org. Khim. 1966, 2, 1320.
(28) Skvarchenko, V. R.; Shil’nikova, A. G.; Kondrateva, N. N.; Levina, R. Ya.; Zhur.; Org. Khim. 1967, 3, 1477.
(29) Skvarchenko. V. R.; Shil’nikova, A. G., Levina, R. Ya.; Zhur.; Org. Khim. 1970, 6, 178.
(30) Friedman, L.; Logullo, F. M.; J. Am. Chem. Soc. 1963, 85, 1549.
(31) Friedman, L.; Logullo, F. M.; J. Org. Chem. 1969, 34, 3089.
(32) Hart, H.; Shamouilian, S.; Takehira,; Y. J. Org. Chem. 1981, 46, 4427.
(33) Godinez, C. E.; Gerardo Zepeda, Garicia-Garibay M. A.; J. Am. Chem. Soc.2002, 124, 4701.
(34) Marc, V. E.; Postma, P. M.; Jonkman, H. T.; Spek, A. L.; Feringa, B. L.; Chem. Commun. 1999, 1709.
(35) Yang, J.-S.; Chiuo, S.-Y.; Liau, K.-L. J. Am. Chem. Soc. 2002, 124.; 2518.
(36) Li, C.-L.; Shieh, S.-J.; Lin, S.-C.; Liu, R.-S.; Org. Lett, 2003, 5, 7, 1131.
(37) Maddux, T.; Li, W.; Yu, L.; J. Am. Chem. Soc. 1997, 119, 844.
(38) Krasovitskii, B. M.; Bolotin, B. M.; Organic Luminescent Materials. 1988.
(39) Jose L.; Segura, Rafael Gomez,; Nazario Martin,; Dirk M. Guldi.; Org. Lett, 2001, 3, 17, 2645.
(40) Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y.; Adv. Mater. 1994, 6, 667.
(31) Bettenhausen, Greczmiel, M.; Jandke, M.; Strohriegl, P.; Synth. Met. 1997, 41, 223.
(42) Wang, P. W.; Liu, Y. J.; Devadoss, C.; Bharathi, P.; Moore, J. S.; Adv. Mater. 1999, 8, 237.
(43) Chen, C.-T.; Chiang, C.-L.; Lin, Y.-C.; Chan, L.-H.; Huang, C.-H.; Tsai, Z.-W.; Chen, C.-T.; Org. Lett. 2003, 5, 8, 1261.
(44) Skotheim, T. A., Elsenbaumer, R. L., Reynolds, J., Eds. Handbook of Conducting Polymers, 2nd ed,; Marcel Dekker: New York, 1997.
(45) Hide, F,; Diaz-Garcia, M. A.; Schwartz, B. J.; Heeger, A. J.; Acc. Chem. Res. 1997, 30, 430.
(46) Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.; J. Science. 1995, 270, 1789.
(47) Uwe H. F. Bunz,; Chem. Rev.2000, 100, 1605.
(48) Zhou, Q.; Swager, T. M.; J. Am. Chem. Soc. 1995, 117, 7017
(49) Zhou, Q.; Swager, T. M.; J. Am. Chem. Soc. 1995, 117, 12593
(50) Pang, Y.; Li, J.; Hu, B.; Karasz, F. E.; Macromolecules. 1998, 31, 6730.
(51) Lee, B. H.; Marvel, C. S.; J. Polym. Sci. Chem. Ed. 1982, 20, 393.
(52) Wadsworth, W. S.; Emmons, W. D.; J. Am. Chem. Soc. 1961, 83, 1733.
(53) Horner, H.; Hoffmann, H.; Klink, W.; Ertel, H.; Toscano, V.; Chem. Ber. 1962, 95, 581.
(54) Wadsworth, W. S.; Jr. Org React. 1997, 25, 75.
(55) Hartwig, J. F.; Angew. Chem. Int. Ed. 1998, 37, 2046.
(56) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L.; Acc. Chem. Res. 1998, 31, 805.
(52) Wolfe J.P.; Buchwald S.L.; J. Org. Chem, 2000, 65.
(58) 邱詩怡,國立中央大學化學系碩士論文,2001.
(59) (a) Han, E.-M.; Do, L.-M.; Nidome, Y.; Fujihira, M.; Chem. Lett. 1994, 969. (b) Fenter, P.; Cshreiber, F.; Bulovic, V.; Forrest S. R.; Chem. Phys. Lett. 1997, 277, 521. (c) Tokito, S.; Tanaka, H.; Noda, K.; Okada, A.; Taga, T.; Appl. Phys. Lett. 1997, 70, 1929.
(60) Debenedetti, P.G.; Stillinger, F. H.; Nature 2001, 410, 259.
(61) (a) Bard, A. J.; Faulkner, L. R.; Electrochemical Methods- Fundamentals and Applications, Wiley, New York, 1980, ch. 14, 634. (b) Koepp, H. M.; Wendt, H.; Strehlow, Z.; Electrochem., 1960, 64, 483.
(62) Zhou, Q.; Swager, T. M.; J. Org. Chem, 1995, 60, 7096.