跳到主要內容

簡易檢索 / 詳目顯示

研究生: 侯坤劭
Kun-Shao Hou
論文名稱: 以磷酸自組性單分子層修飾介電層表面特性應用於橫向與垂直有機電晶體之研究
Surface modification with phosphonic acid self assembled monolayer for lateral and vertical organic transistors
指導教授: 張瑞芬
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 120
中文關鍵詞: 磷酸自組性單分子層
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究磷酸自組性單分子層沉積於金屬氧化層對橫向與垂直有機電晶體,並探討不同碳鏈長的自組性單分子層(SAM)對於N型小分子材料碳六十(C60)與P型小分子材料dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b](DNTT)與金屬氧化層界面的影響。由橫向電晶體電性表現結果發現當SAM成長於金屬氧化層基材有助於載子遷移率(mobility)提升,其中在DDPA(C12)處理下mobility較高。進一步透過AFM結構分析,觀察表面形貌、晶粒大小以及表面粗糙度的差異。本研究再以膠體微影技術製作P型垂直電晶體,並探討在不同碳鏈長的SAM對於垂直電晶體載子的側向注入,發現開電流密度提升的趨勢與橫向電晶體的mobility相仿。


    In this thesis, the organic thin film transistors(OFET) and vertical organic transistors(VFET) were fabricated with phosphonic acid self-assembled monolayer deposited on the metal oxide, and the influence of alkyl chain length on the organic semiconductor(OSC)/dielectric interface were investigated. From the results of transistor characteristics, we found that SAM grows on metal oxide contribute to enhancing the mobility .The OFET with DDPA exhibited the highest saturation mobility among the PA-SAMs. Further investigations from AFM analyse showed that the differences grain size and growth mode. This thesis applies colloidal lithography to fabricate DNTT VFET. And then we explore the lateral injection of carriers of VFET. This study found that the trend of increasing the current density is similar to mobility of the lateral transistor.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章緒論 1 1-1前言 1 1-2自組性單分子層 3 1-3蕭特基基底垂直式電晶體 5 1-4研究動機 9 第二章基礎原理 11 2-1有機薄膜場效電晶體簡介 11 2-2有機場效電晶體基本架構 12 2-3有機場效電晶體之工作原理 15 2-4有機場效電晶體之電流對電壓關係與重要參數 18 2-5自組性單分子層簡介 21 2-6垂直式電晶體之工作原理 23 2-6-1垂直電晶體-關狀態之工作機制 25 2-6-2垂直電晶體-開狀態之工作機制 28 2-6-3垂直電晶體-轉換特性曲線與開/關電流比 32 第三章 實驗部分 34 3-1材料介紹 35 3-2實驗儀器設備 40 3-3量測儀器 45 3-4橫向電晶體實驗製成步驟 58 3-5垂直有機電晶體之元件設計 61 第四章 結果與討論 67 4-1 N-channel不同自組性單分子層處理的電性表現 67 4-2 P-channel不同自組性單分子層處理的電性表現 73 4-2-1不同自組性單分子層處理對於電晶體之影響 73 4-2- 2 不同SAM處理的DNTT之表面形貌與晶體結構 78 4-2-3 DNTT 薄膜的近緣X光吸收細微結構光譜 82 4-2-4不同SAM處理的DNTT之XRD分析 86 4-3低電壓驅動垂直有機電晶體 88 4-3-1高電容密度介電層 88 4-3-2開孔源極電極之製作 90 4-3-3 P型垂直式有機電晶體 93 第五章 結論與未來展望 97 參考文獻 99

    1] W. Gu, W. Jin, B. Wei, J. Zhang, J. Wang, Applied Physics Letters, 97 (2010) 243303.
    [2] T. Maeda, H. Kato, H. Kawakami, Applied Physics Letters, 89 (2006) 123508.
    [3] J. Youn, G.R. Dholakia, H. Huang, J.W. Hennek, A. Facchetti, T.J. Marks, Advanced Functional Materials, 22 (2012) 1856-1869.
    [4] K. Xiao, Y. Liu, G. Yu, D. Zhu, Applied Physics A: Materials Science & Processing, 77 (2003) 367-370.
    [5] H. C. Lin, H. W. Zan , Y. C. Chao, M. Y. Chang, H. F. Meng, Science , 30 (2015) 054003.
    [6] J.-F. Chang, W.-R. Chen, S.-M. Huang, Y.-C. Lai, X.-Y. Lai, Y.-W. Yang, C.-H. Wang, Organic Electronics, 27 (2015) 84-91.
    [7] N. Yoshimoto, H. Brisset, J. Ackermann, C. Videlot-Ackermann, Open Journal of Applied Sciences, 02 (2012) 283-293.
    [8] S.R.P. Marcia M. Payne, John E. Anthony, Chung Chen Kuo, Thomas N. Jackson, J. AM. CHEM. SOC, 127 (2005) 4986-4987
    [9] J. Smith, R. Hamilton, Y. Qi, A. Kahn, D.D.C. Bradley, M. Heeney, I. McCulloch, T.D. Anthopoulos, Advanced Functional Materials, 20 (2010) 2330-2337.
    [10] J.W. Shi, H.B. Wang, D. Song, H.K. Tian, Y.H. Geng, D.H. Yan, Advanced Functional Materials, 17 (2007) 397-400.
    [11] C.A. Di, G. Yu, Y. Liu, Y. Guo, W. Wu, D. Wei, D. Zhu, Phys Chem Chem Phys, 10 (2008) 2302-2307.
    [12] F.-C. Chen, C.-H. Liao, Applied Physics Letters, 93 (2008) 103310.
    [13] Y.L. CHONG AN DI, GUI YU, DAOBEN ZHU, ACCOUNTS OF CHEMICAL RESEARCH, Vol. 42 (2009) No.10.
    [14] D. Kumaki, M. Yahiro, Y. Inoue, S. Tokito, Applied Physics Letters, 90 (2007) 133511.
    [15] C.A. Di, G. Yu, Y. Liu, Y. Guo, X. Sun, J. Zheng, Y. Wen, Y. Wang, W. Wu, D. Zhu, Phys Chem Chem Phys, 11 (2009) 7268-7273.
    [16] K.Fukuda, T.Hamamoto, T.Yokota, T.Sekitani, U.Zschieschang, H.Klauk, T.Someya, Appl. Phys. Lett, 95 (2009) 203301
    [17] Orb Acton, Manish Dubey, Tobias Weidner, Kevin M. O’Malley, Tae-Wook Kim, Guy G. Ting, Daniel Hutchins, J. E. Baio, Tracy C. Lovejoy, Alexander H. Gage, David G. Castner, Hong Ma, and Alex K.-Y. Jen, Adv. Funct.Mater, 97 (2011) 1476-1488
    [18] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, N. Tessler, Applied Physics Letters, 95 (2009) 213301.
    [19] C. M. Keum, I. H. Lee, S. H. Lee, G. J. Lee, M. H. Kim, S. D. Lee, Optics Express, 22 (2014) 14750.
    [20] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, ACS Applied Mater, 7 (2015) 2149-2152.
    [21] M. G. Lemaitre, E. P. Donoghue, M. A. McCarthy, B. Liu, S. Tongay, B. Gila, P. Kumar, R. K. Singh, B. R. Appleton, A. G. Rinzler, ACS Nano,6 (2012) 9095-9102.
    [22] W. Chen, A. Rinzler, J. Guo, Journal of Applied Physics, 113 (2013) 094507.
    [23] W. Chen, A. G. Rinzler, Jing Guo, Journal of Applied Physics, 113 (2013) 234501.
    [24] B. Liu, M. A. McCarthy, Y. Yoon, D. Y. Kim, Z. Wu, F. So, P. H. Holloway, J. R. Reynolds, J. Guo, A. G. Rinzler, Advanced Materials, 20 (2008) 3605-3609.
    [25] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A G. Rinzler, Science ,2305 (2004) 1273-1276.
    [26] M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, Science , 332 (2011) 570-573.
    [27] H. Yu, Z. Dong, J. Guo, D. Kim, F. So, ACS Applied Mater, 8 (2016) 10430-10435.
    [28] J. Peng, Q. Sun, S. Wang, H.-Q. Wang, W. Ma, Applied Physics Letters, 103 (2013) 061603.
    [29] Y.R. Su, W.G. Xie, Y. Li, Y. Shi, N. Zhao, J.B. Xu, Journal of Physics D: Applied Physics, 46 (2013) 095105.
    [30] B.L. M. A. McCarthy, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler, SCIENCE, 332 (2011) 570-573.
    [31] M.A. McCarthy, B. Liu, A.G. Rinzler, Nano Lett, 10 (2010) 3467-3472.
    [32] K.F. Seidel, L. Rossi, R.M.Q. Mello, I.A. Hümmelgen, Journal of Materials Science: Materials in Electronics, 24 (2012) 1052-1056.
    [33] F. So, C. Adachi, K. Jokinen, A. Bykov, T. Fabritius, R. Myllylä, 9183 (2014) 91831Q.
    [34] M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Applied Physics Letters, 81 (2002) 268.
    [35] K.C. Yoon MH, Facchetti A, Marks TJ., J Am Chem Soc, 128(39) (2006) 12851-12869.
    [36] Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, T. Sakurai, Applied Physics Letters, 84 (2004) 3789.
    [37] M. McDowell, I.G. Hill, J.E. McDermott, S.L. Bernasek, J. Schwartz, Applied Physics Letters, 88 (2006) 073505.
    [38] Y. Jang, J.H. Cho, D.H. Kim, Y.D. Park, M. Hwang, K. Cho, Applied Physics Letters, 90 (2007) 132104.
    [39] M. Waqas Alam, Z. Wang, S. Naka, H. Okada, Applied Physics Letters, 102 (2013) 061105.
    [40] J.-Z.W. Cheng-Yu Lu, Hong-Yu Su, Dian Luo, Yun-Lan Chen, Chih-Hao Chang, Hsin-Hua Chang, OPTIC, (2015).
    [41] X. Cheng, Y.-Y. Noh, J. Wang, M. Tello, J. Frisch, R.-P. Blum, A. Vollmer, J.P. Rabe, N. Koch, H. Sirringhaus, Advanced Functional Materials, 19 (2009) 2407-2415.
    [42] A.H. Bert de Boer, M. Magdalena Mandoc, Teunis van Woudenbergh, Paul W. M. Blom, Adv. Mater, 5 (2005) 621-625.
    [43] H.S. Jana Zaumseil, Chem. Rev, 107 (2007) 1296-1323.
    [44] I.G. Hill, C.M.Weinert, L.Kreplak, B.P.van Zyl, Appl Phys A,
    94 (2008)
    [45] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, N. Tessler, Applied Physics Letters, 95 (2009) 213301.
    [46] Y. Preezant, N. Tesslera, Journal of Applied Physics, 93 (2003) 2059.
    [47] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Applied Physics Letters, 67 (1995) 121.
    [48] Hong Ma, Orb Acton, Daniel O. Hutchins, Nathan Cernetic and Alex K.-Y. Jen,Phys. Chem. Chem. Phys,14 2012 14110-141263
    [49] Orb Acton, Guy G. Ting, Patrick J. Shamberger, Fumio S. Ohuchi, Hong Ma, and Alex K.-Y. Jen. Applied Materials & Interfaces, 2 2010 2511-520.
    • [50] Min-Cherl Jung, Matthew R. Leyden, Gueorgui O. Nikiforov, Michael V. Lee, Han-Koo Lee, Tae Joo Shin, Kazuo Takimiya, Yabing Qi. Applied Materials & Interfaces, 7 2015 1833-1840.

    QR CODE
    :::