| 研究生: |
張彥然 Yen-jan Chang |
|---|---|
| 論文名稱: |
線性相關工作與非相關工作的探索式排程策略 Heuristic Scheduling Strategies for Linear-Dependent and Independent Tasks |
| 指導教授: |
王尉任
Wei-Jen Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 工作排程 、網格計算 、探索式方法 、工作相依性 |
| 外文關鍵詞: | Job scheduling, Grid computing, Heuristics, Job dependency. |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於網際網路的發展和計算機的取得越來越容易,分散式計算已經變成新一代計算機科學上主要的研究領域。分散式計算其中一個主要的動機是期望它能夠整合分散在各地的計算資源並且提供強大的計算服務給使用者。為了達到這樣的目的,在分散式計算系統中一種有效率的排程演算法是不可或缺的一部分。因為最佳化排程已經被證明是屬於NP-Hard,所以這篇論文主要的研究目標是探索式的排程演算法。探索式演算法能避免為了追求最佳解所需的大量運算的時間,而以近似的解來取代最佳解並且省去了大量的計算時間。
在這篇論文中我們會先介紹一些常用於排程的探索式的方法,包括優點、缺點以及它們的虛擬碼。然後利用網格模擬器GridSim[1]去模擬在工作間具有線性相依性和不具有相依性的情況下各個探索式的方法的效能表現,並討論其模擬的結果。最後在根據各個探索式方法模擬出來的結果整合出一個混合式的方法。這個混合式的方法可以避免單一探索式的方法在特定情況下所遇到的問題。我們也會去檢驗混合式的方法在job間具有相依性、job間不具有相依性和job間具有隨機的相依性的情況下表現出來的效能。
Thanks to advances in wide-area network technologies and the low cost of computing resources, grid computing came into being an active research area. One motivation of grid computing is to aggregate the power of widely distributed resources, and to provide non-trivial services to the users. To minimize the total completion time (makespan), an efficient grid scheduling mechanism must be used in a grid system to dispatch computing tasks to computing resources effectively. However, it has been proved that the optimal scheduling algorithm is NP-hard. Therefore, many people turn to use heuristic approaches for grid scheduling. In this thesis, we introduce eleven common scheduling heuristics to schedule a combination of linear dependent jobs and independent jobs. Then, we use a grid simulator, namely GridSim[1], to evaluate the performance of these heuristic approaches. According to the simulation results, we propose a novel hybrid heuristic approach that can avoid the drawbacks of the eleven heuristic approaches under different situations. Further simulation results confirm that the proposed hybrid approach is among the best heuristic approaches under most circumstances.
References
[1] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, “A toolkit for modelling and simulating data Grids: an extension to GridSim,” Concurr. Comput. : Pract. Exper., vol. 20, Sep. 2008, pp. 1591–1609.
[2] D. Jewitt., “Project Pan-STARRS and the Outer Solar System.,” Earth, Moon and Planets., 2004.
[3] “Globus Toolkit,” http://www.globus.org/toolkit/.
[4] R. Raman, M. Solomon, A. Roy, and M. Livny, “The classads language,” Grid Resource Management: State of the Art and Future Trends.
[5] R. Armstrong, D. Hensgen, and T. Kidd, “The Relative Performance of Various Mapping Algorithms is Independent of Sizable Variances in Run-time Predictions,” IN 7TH IEEE HETEROGENEOUS COMPUTING WORKSHOP (HCW ’98, vol. 79, 1998, p. 79--87.
[6] C. Simatos, “Making Simjava count,” MSc. Project report, The University of Edinburgh, 2002.
[7] J.D. Ullman, “NP-complete scheduling problems,” Journal of Computer and System Sciences, vol. 10, Jun. 1975, pp. 384–393.
[8] Garey, M. and Johnson, D., “A Guide to the Theory of NP-Completeness,” WH Freeman and Co, New York, 1979.
[9] J. Du, J.Y.-T. Leung, and G.H. Young, “Scheduling chain-structured tasks to minimize makespan and mean flow time,” Information and Computation, vol. 92, Jun. 1991, pp. 219-236.
[10] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen, and R.F. Freund, “A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems,” Journal of Parallel and Distributed Computing, vol. 61, Jun. 2001, pp. 810–837.
[11] P.-Y. Lin and P. Liu, “Job Scheduling Techniques for Distributed Systems with Temporal Constraints,” Advances in Grid and Pervasive Computing, P. Bellavista, R.-S. Chang, H.-C. Chao, S.-F. Lin, and P.M.A. Sloot, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 280-289.
[12] R.J. Al-Ali, K. Amin, G. Laszewski, O.F. Rana, D.W. Walker, M. Hategan, and N. Zaluzec, “Analysis and Provision of QoS for Distributed Grid Applications,” Journal of Grid Computing, vol. 2, Jun. 2004, pp. 163-182.
[13] K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy and Survey of Grid Resource Management Systems,” SOFTWARE PRACTICE AND EXPERIENCE, vol. 32, 2002, p. 135--164.
[14] “Scheduling with advanced reservations,” 2000, pp. 127-132.
[15] A. Sulistio and R. Buyya, “A Grid Simulation Infrastructure Supporting Advance Reservation,” 2004.
[16] A.S. Mcgough, A. Afzal, J. Darlington, N. Furmento, A. Mayer, and L. Young, “Making the Grid Predictable through Reservations and Performance Modelling,” The Computer Journal, vol. 48, May. 2005, pp. 358–368.
[17] M. Wieczorek, M. Siddiqui, A. Villazon, R. Prodan, and T. Fahringer, “Applying Advance Reservation to Increase Predictability of Workflow Execution on the Grid,” Washington, DC, USA: IEEE Computer Society, 2006, p. 82–.
[18] “On the Design of Online Scheduling Algorithms for Advance Reservations and QoS in Grids,” Mar. 2007, pp. 1-10.
[19] “Efficient resource management using advance reservations for heterogeneous Grids,” Apr. 2008, pp. 1-12.
[20] G. Singh, C. Kesselman, and E. Deelman, “A provisioning model and its comparison with best-effort for performance-cost optimization in grids,” New York, NY, USA: ACM, 2007, pp. 117–126.
[21] H. Dail, O. Sievert, F. Berman, H. Casanova, A. YarKhan, S. Vadhiyar, J. Dongarra, C. Liu, L. Yang, D. Angulo, and I. Foster, “Grid resource management,” J. Nabrzyski, J.M. Schopf, and J. Weglarz, Eds., Kluwer Academic Publishers, 2004, pp. 73–98.
[22] J. Yu, R. Buyya, and K. Ramamohanarao, “Workflow Scheduling Algorithms for Grid Computing.”
[23] Scheduling Algorithms, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
[24] W.H. Bell, D.G. Cameron, L. Capozza, A.P. Millar, K. Stockinger, and F. Zini, “Simulation of Dynamic Grid Replication Strategies in OptorSim,” Grid Computing — GRID 2002, M. Parashar, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 46-57.
[25] C.Mihai Dobre and C. Stratan., “MONARC simulation framework,” Proc. of the RoEduNet International Conference, 2004.
[26] “ChicSim - the Chicago Grid Simulator,” http://people.cs.uchicago.edu/~krangana/ChicSim.html, 2007.
[27] A. Legrand, L. Marchal, and É.N. Supérieuredelyon, “Scheduling Distributed Applications: The SimGrid Simulation Framework,” IN PROCEEDINGS OF THE THIRD IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID (CCGRID’03, 2003, p. 138--145.
[28] “The MicroGrid: a Scientific Tool for Modeling Computational Grids,” Nov. 2000, pp. 53- 53.