跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李宛柔
Wan-Jou Li
論文名稱: 波動率指數於真實波動率及指數報酬之相關研究
The Study on Volatility Index and Its Relationship between Realized Volatility and Stock Index Return
指導教授: 羅庚辛
Keng-Hsin Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
畢業學年度: 94
語文別: 中文
論文頁數: 78
中文關鍵詞: 波動率指數VXOVIX真實波動率指數報酬
外文關鍵詞: Volatility index, VXO, VIX, Realized Volatility, Stock Index Return
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究仿效CBOE先後公佈二套波動率指數編制方法,編制臺指選擇權之VXO與VIX,希望能建立一套有效指標為投資者帶來更適切的資訊。研究期間為2002年4月1日至2006年3月31日,共計997個交易日之日資料作為樣本,主要針對波動率指數對未來真實波動率之預測能力及波動率指數與指數報酬之間的關係作為研究的二大主題,最後再輔以穩定度分析,使結論更具可靠性,本研究結論歸納如下:
    一、以三種波動率模型(HV、VXO及VIX) 來預測未來真實波動率,透過迴歸分析,各時期下均以VXO預測能力最佳,且隨著真實波動率計算期間增長預測能力逐漸增加;於迴歸模型中加入交易量變數,亦可增加預測能力。另外利用MAE與RMSE分析,大致以VXO與真實波動率間的誤差為最小。
    二、VXO與VIX的變動對同期股價指數報酬皆有顯著負向關係,同時注意到VXO變動和報酬呈現負向不對稱關係,而VIX不對稱關係不顯著。進一步以多空頭市場來研究,空頭市場下加強了VXO不對稱效果,而在多頭市場下VXO無不對稱效果;VIX在多空頭市場下皆無不對稱效果。
    三、VXO及VIX在預期未來指數報酬方面皆只有對未來10日、20日及60日有顯著負向關係存在,並以VXO解釋能力較佳,若加入交易量結果亦為VXO最佳。
    四、將歷年樣本依高低波動率排序,發現VXO與VIX在低波動率時未來持有期間報酬多為負值,在高波動率時報酬多為正值,隨著持有期間拉長報酬會有相反變化。
    五、將樣本依照市場交易情形劃分二階段,加以檢驗VXO與VIX預測真實波動率與預測未來指數報酬,結果均以VXO表現較佳,與全樣本時期結果一致。
    就二種波動率指數在臺灣選擇權市場應用來看,以VXO指標在臺灣市場較能提供較多的資訊內容及預測能力,期待臺灣未來也能建構適合市場的波動率指數。


    This article makes a description of the market volatility indices (VXO and VIX) which were introduced by CBOE in 1993 and 2003. We apply the two formulas of volatility indices to calculate volatility indices of TXO. The research period is from April 1, 2002 to March 31, 2006.The main topic of this research is to test the ability of the volatility index to forecast realized volatility and test the relationship between volatility index and stock index return. Finally, the research is also supplemented with robustness analysis to make the conclusion more credible. The major empirical results are shown as follows.
    1. Three models are used to forecast realized volatility. By regression analysis, VXO has the best forecasting ability among all volatility models and the forecasting ability increases with the increase of calculation period of realized volatility. If options trading volume is added to the regression model, the forecasting performance increases as well. Besides, VXO has the lowest error from MAE and RMSE analysis.
    2. There is a negative relationship between the changes in the stock index return and volatility indices. For VXO, the relationship is asymmetric. The extent of this asymmetric effect depends on the market trend. The bear market enhances VXO''s asymmetric effect while there is no significant asymmetric effect in the bull market. For VIX, there is no asymmetric effect in either market.
    3. As for the VXO and VIX to forecast the stock index return, there is significant negative relationship only for 10, 20 and 60 days. VXO has the better power to forecast the stock index return. VXO also has the better forecasting power when options trading volume is added.
    4. If the volitility is sorted, the low volatility from VXO and VIX is accompanied by negative return while the high volatility is accompanied by the positive return.
    5. If the sample is divided into two stages according to the trading environment to test the ability of VXO and VIX to predict the volatility and stock index return, VXO is the best estimator. This result is consistent with that of the whole sample period.
    For the application in Taiwan option market, VXO is able to provide more information and ability to forecast. It is hoped that Taiwan market can establish the appropriate volatility index.

    第一章  緒論   第一節 研究背景.................... 1 第二節 研究動機.................... 2 第三節 研究目的.................... 4 第二章 文獻回顧 第一節 臺灣指數選擇權概述.......... 7 第二節 隱含波動率相關文獻.......... 10 第三節 CBOE編製之VXO介紹........... 13 第四節 CBOE編製之VIX介紹........... 17 第五節 波動率指數之相關文獻........ 20 第三章 研究方法 第一節 資料來源及處理.............. 23 第二節 波動率估計及預測力指標...... 25 第三節 迴歸分析.................... 27 第四節 資料檢定.................... 32 第四章 實證結果 第一節 臺指選擇權之波動率指數...... 34 第二節 波動率指數與真實波動率之相關 40 第三節 波動率指數與指數報酬之相關.. 48 第四節 穩定度分析 ..................65 第五章 結論與建議 第一節 結論........................ 70 第二節 建議........................ 72 參考文獻............................ 74

    一、中文文獻
    石村貞夫(2005),《時間數列的SPSS使用手冊》,台北:鼎茂圖書。
    江木偉(2004),《台指選擇權隱含波動率指標之資訊內涵─新編VIX指標之實證》,國立臺灣大學財務金融研究所碩士論文,出版。
    李佳玲(2006),《台指選擇權波動率指標與經濟指標關係性之研究》,國立中央大學企業管理研究所碩士論文,出版。
    卓必靖(2004),《臺指選擇權VIX 指數基礎制避險績效之研究》,銘傳大學財務金融學系碩士在職專班碩士論文,出版。
    林傑斌、林川雄、劉明德(2005),《SPSS 12 統計建模與分析程序》,台北:文魁資訊。
    柯政宏(2004),《CBOE新編VIX指數於台指選擇權及實現波動度預測上之應用》,銘傳大學財務金融學系碩士在職專班碩士論文,出版。
    胡僑芸(2003),《台指選擇權VIX指數之編制與交易策略分析》,國立中山大學財務管理研究所碩士論文,出版。
    陳東明(1991),《臺灣股票市場價量關係之實證研究》,國立臺灣大學商學研究所碩士論文,出版。
    陳育聖、謝忠和譯(2001),Ken Black 著,《商業統計學(上)(下)》(Business statistics: contemporary decision making, 2nd ed.),台北:揚智,(原書於1996年出版)。
    陳思名(2005),《台指選擇權波動性指標之預測能力比較》,國立臺灣大學國際企業學研究所碩士論文,出版。
    陳美惠(2003),《會計師簽證、法人持股與資訊不對稱對空頭市場股票報酬影響之研究》,朝陽科技大學企業管理系碩士論文,出版。
    張尚原(2006),《台灣選擇權市場最適波動度指標之研究》,國立中央大學企業管理研究所碩士論文,出版。
    張秀華 (2001),《股價指數與交易量動態關係之實證研究》,東海大學企業管理研究所碩士論文,出版。
    楊奕農(2005),《時間序列分析 經濟與財務上之應用》,台北:雙葉。
    鄭淙仁 (1992),《臺灣股市日內價量關係之探討》,國立政治大學企業管理研究所碩士論文,出版。
    鄭義、胡僑芸、林忠義(2005),〈波動度指數VIX於臺指選擇權市場之應用〉,《臺灣期貨市場TAIFEX REVIEW專題報導》,第7卷,頁13-33。
    二、英文文獻
    Anthony, J., (1988), “The interrelation of stock and options market trading volume data”, Journal of Finance, vol. 43, pp949-964.
    Black, F., and M., Scholes,(1973), “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, vol. 81, pp637-659
    Brooks, C., (1998), “Prediciting Stock Index Volatility: Can Market Volume Help?”, Journal of Forecasting, vol. 17, pp59-80.
    Campbell, J. Y., S. J. Grossmn and J. Wang, (1993), “Trading volume and serial correlation in stock –returns”, Quarterly Journal of Economics, vol. 108, pp905-939.
    Canina, L. and S. Figlewski, (1993), “The Informational Content of Implied Volatility”, The Review of Financial Studies, pp659-681.
    Chiras, D. P. and S. Manaster, (1978), “The Information Content of Option Prices and a Test of Market Efficiency”, Journal of Financial Economics, pp213-234.
    Christensen B.J. and N. R. Prabhala, (1998), “The Relation between Implied and Realized Volatility”, Journal of Financial Economics, vol. 50, pp125-150.
    Clark, P. K., (1973), “A subordinated stochastic process model with finite variance for speculative prices”, Econometrica, vol. 41, pp135-155.
    Cox, J. C., S. Ross, and M. Rubinstein,(1979), “Option Pricing:A simplified Approach”, Journal of Financial Economics, vol. 7, pp229-264.
    Crouch, R. L., (1970), “A nonlinear test of the random-walk hypothesis”, American Economic Review, vol. 60, pp199-202.
    Day, T. E. and Lewis, Craig M. (1992), “Stock Market Volatility and the Information Content of Stock Index Options”, Journal of Econometrics, vol. 52, pp267-287.
    Demeterfi, K., and E. Derman, and M. Kamal, and J. Zou , (1999),“A guide to volatility and variance swaps”, Journal of Derivatives, vol. 6, pp9-32.
    Dickey, D.A. and W. A. Fuller (1979), “Distribution of the Estimators for Autoregressive Time Series with a Unit Root”,Journal of Future American Statistical Association, vol. 74, no. 366, pp427-431.
    Derman, E., M. Kamal, I. Kani, J. McClure, and J. Zou, (1998), “Investing in Volatility”, Journal of Derivatives pp7-11.
    Dumas, B., J., Fleming, and R., Whaley (1998), “Implied Volatility Functions: Empirical Tests”, Journal of Finance, vol. 53, pp2059-2106.
    Fabzzi, F. J. and J. C. Francis (1979), “Mutual Fund Systematic Risk for Bull and Bear Markets : An Empirical Examination”, Journal of Finance, vol. 34, pp.1243-1250.
    Figlewski, S., and X. Wang (2000), "Is the “Leverage Effect” a Leverage Effect? ", Working Paper S-00-37, New York University, Stern School of Business.
    Fitzgerald, D., (1999), “Trading Volatility”, Risk Mangement and Analysis. vol.2: New Marketand Products, Edited by C. Alexander, pp261-291.
    Fleming, J., B., Ostdiek, and R., E., Whaley, (1995), “Predicting Stock Market Volatility: A New Measure”, Journal of Futures Markets, vol. 15, pp265-302.
    Fleming, J. (1998), “The Quality of Market Volatility Forecasts Implied by S&P100 Index Options Prices”, Journal of Empirical Finance, vol. 5, pp317-345.
    French, K.R., G.W., Schwert, and R.F, Stambaugh,(1987), “Expected Stock Returns and Volatility”, Journal of Financial Economics, vol. 19, pp3-29.
    Epps, T.W. (1975), “Security price changes and transaction volumes: theory and evidence”, American Economic Review, vol. 65, pp586-597.
    Gemmill, G., (1986), “The forecasting performance of stock options on the London Traded Options Marker”, Journal of Business Finance and Accounting, vol. 13, pp535~546.
    Granger,C. and Newbold,P., (1974), “Superious regression in econometrics”, Journal of Econometrics. vol. 2, pp111-120.
    Giot, P., (2002a), “Implied Volatility Indices as Leading Indicators of Stock Index Returns? “, Working Paper, CORE, University of Leuvain.
    ___, (2002b), “The Information Content of Implied Volatility Indexes for forecasting Volatility and Market Risk”, Working Paper, CORE, University of Leuvain.
    Giot, P., (2005), “Relationships between Implied Volatility Indexes and Stock Index Returns”, Journal of Portfolio Management, vol. 31, pp92-100.
    Harris, L., and E. Gurel., (1986), “Price and volume effects associated with changes in the S&P 500 list: new evidence for the existence of price pressures”, Journal of Finance, vol. 41, pp815-829.
    Jorion, P., (1995), “Prediction Volatility in the Foreign Exchange Market”, Journal of Finance, vol. 50, pp507-528.
    Karpoff, J., (1987), “The relation between price changes and trading volume: a survey”, Journal of Financial and Quantitative Analysis, vol. 22, pp109~123.
    Kim, M. K. and J. K. Zumwalt, (1979), “An Analysis of Risk in Bull and Bear Markets”, Journal of Financial and Quantitative analysis, vol. 14, pp.1015-1025.
    Lamoureux, C. G. and W. D. Lastrapes, (1993), “Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatility”, The Review of Financial Studies, vol. 6, no. 2, pp293-326.
    MacBeth, J. and L., Merville, (1979), “An Empirical Examination of the Black–Scholes Call Option Pricing Model”, Journal of Finance, vol. 34, pp1173–1186.
    Maggie M. C. and T. E. Copeland, (1999), “Market timing: Style and size rotation using the VIX”, Financial Analysts Journal, Vol. 55, pp73-81.
    Mayhew, S., (1995), “Implied Volatility”, Financial Analysts Journal, vol. 50, pp8-20.
    McInish, T. H. and R. A. Wood, (1990a), “A Transactions Data Analysis of the Variability of Common Stock Returns During 1980-1984”, Journal of Banking and Finance, vol. 14, pp 99-112.
    Whaley, R. E., (1993), “Derivatives on Market Volatility:Hedging Tools Long Overdue”, The Journal of Derivatives, pp71-84.
    __________, (2000), “The Investor Fear Gauge”, Journal of Portfolio Management, vol. 26, pp12-17.
    Said, S. and D. Dickey, (1984), “Testing for Unit Roots in Autore-ressive Moving Average Method of Unknown Order,” Bi- ometrica, vol.71, pp599-607.
    Poon S.H. and Clive W.J.Granger, (2003), “Forecasting Volatility in Financial Market:A Review”, Journal of Economic Literature, vol. 41, pp478-539.
    Simon D., and R. Wiggins, (2001), “S&P Futures and Contrary Sentiment Indicators,” Journal of Futures Market, vol. 21, no. 5, pp447-462.
    Traub, H., L. Ferreira, M. McArdle and M. Antognelli, (2000), “Fear and Greed in Global Asset Allocation”, The Journal of Investing, vol.9, no.1, pp21-37.
    Ying, C. C., (1966), “Stock market prices and volumes of sales”, Econometrica, vol. 34, pp676-685.

    QR CODE
    :::