跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王派笙
Pai-Sheng Wang
論文名稱: 磁層與電離層耦合模式中磁層與電離層邊界條件對磁副暴發生時夜側極光弧分布之影響
指導教授: 呂凌霄
Ling-Hsiao Lyu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 192
中文關鍵詞: 磁層與電離層耦合極光副暴啟動
外文關鍵詞: Magnetosphere-Ionosphere coupling, Auroral substorm onset
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由磁層與電離層耦合模型來研究「極光副暴啟動」過程。Akasofu[1964]指出「極光副暴啟動」的時間點可由夜側最靠近赤道的極光弧突然發亮的時間點來定之。Kan et al.[1988]提出的磁層與電離層耦合模型中,磁層環流增強與不均勻的電離層導電率分布是啟動極光副暴重要因素。我們可以透過磁層與電離層耦合模型模擬的場向電流分布結果來推測極光弧的分布位置。本篇論文的模擬研究以Kan et al.[1988]的模擬模型為藍本,考慮不同的電離層與磁層邊界條件,其中包括了電漿片霍爾效應。本論文的研究結果顯示磁層側電漿片霍爾效應所貢獻的場向電流能夠讓高緯電離層Region 1向上場向電流與Region 2向上場向電流相連,這組相連的向上場向電流分布能夠產生午夜側的弧狀極光。本次研究結果顯示,形成「極光副暴啟動」時的極光弧與電漿片變薄有很大的關係。


    The objectives of this study is to simulate the onset of auroral substorm by means of Magnetosphere-Ionosphere coupling (M-I coupling) model. Akasofu[1964] proposed that the sudden brightening of the most equatorward aurora arc is the signal of auroral substorm onset. Kan et al.[1988] proposed a M-I coupling model and suggested that enhanced magnetospheric convection and nonuniform electric conductivity in the high latitude E-region ionosphere can lead to auroral substorm onset. In the M-I coupling model, the location of aurora arc can be inferred from the location of upward field-aligned current. In this study, we examine the auroral substorm onset based on the M-I coupling model proposed by Kan et al.[1988]. We modify the boundary condition on the magnetosphere side by including the Hall effect in the near-Earth plasma sheet during the explosive thinning period. The field-aligned current distribution contributed by the Hall effect in the near-Earth plasma sheet can lead to continuous and uninterrupted Region 1 upward field-aligned current and Region 2 upward field-aligned current in the ionosphere. Our results indicate that the Hall effect in the plasma sheet plays an important role in the formation of the bright aurora arc in the midnight sector before auroral substorm onset.

    中文摘要 ……………………………………………………………… i 英文摘要 ……………………………………………………………… ii 誌謝 ……………………………………………………………… iii 目錄 ……………………………………………………………… iv 圖目錄 ……………………………………………………………… vii 表目錄 ……………………………………………………………… xiv 第一章 緒論………………………………………………………… 1 1-1 極光副暴與磁層副暴……………………………………… 1 1-2 電離層E層上方場向電流分布…………………………… 4 1-3 電離層E層中垂直磁場方向電流分布…………………… 6 1-3-1 高緯電離層E層不均勻導電率分布……………………… 6 1-3-2 高緯電離層環流…………………………………………… 7 1-4 研究動機…………………………………………………… 8 第二章 磁層與電離層耦合模型…………………………………… 10 2-1 原始模型基本方程式……………………………………… 10 2-1-1 阿爾文波所攜帶之場向電流……………………………… 10 2-1-2 電場與導電率不均勻造成之場向電流…………………… 11 2-1-3 場向電流改變電離層導電率機制………………………… 14 2-1-4 場向電流與磁層電離層耦合……………………………… 15 2-2 模型改進…………………………………………………… 18 第三章 磁層與電離層耦合模擬參數介紹………………………… 20 3-1 電離層側初始條件………………………………………… 20 3-1-1 初始雙胞型電位分布……………………………………… 21 3-1-2 初始「對高度積分霍爾導電率」Σ_H分布………………… 25 3-2 磁層側邊界條件…………………………………………… 28 3-2-1 磁層反射係數分布………………………………………… 28 3-2-2 電漿片霍爾效應…………………………………………… 32 3-3 太陽風驅動電場隨時間變化參數選取…………………… 36 3-4 其他模擬常數之參數的選取……………………………… 37 第四章 模擬結果………....………………………………………… 38 4-1 太陽風驅動電位分布差異對模擬結果之影響…………… 39 4-2 初始電離層E層夜側Σ_H^Night分布差異對模擬結果之影響 47 4-3 磁層側反射係數分布差異對模擬結果之影響…………… 55 4-4 近地電漿片霍爾效應對模擬結果之影響………………… 63 第五章 總結與討論………………………………………………… 75 參考文獻 ……………………………………………………………… 77 附錄A 阿爾文波與場向電流……………………………………… 80 A-1 阿爾文波模中擾動磁流體流速與擾動磁場關係式……… 80 A-2 阿爾文波場向電流與波動電場關係式…………………… 81 附錄B 電離層導電率張量簡介…………………………………… 83 B-1 霍爾導電率與帕德森導電率……………………………… 84 B-2 電離層導電率……………………………………………… 85 附錄C 不同參數之模擬結果隨時間演化之過程………………… 87 附錄D 程式碼……………………………………………………… 150 D-1 磁層與電離層耦合模型…………………………………… 150 D-2 初始參數選取方式………………………………………… 166

    Akasofu, S.-I., 1964. The development of the auroral substorm. Planet.
    Space Sci., 12, 273-282.
    Akasofu, S.-I., 1968. Polar and Magnetospheric Substorms. D. Reidel
    Publishing Company, Dordrecht, Holland.
    Friis-Christensen E., Y. Kamide, A. D. Richmond, and S. Matsushita,
    1985. Interplanetary magnetic field control of high-latitude
    electric fields and currents determined from Greenland
    Magnetometer Data. J. Geophys. Res., 90(A2), 1325-1338.
    Iijima T., and T. A. Potemra, 1978. Large-scale characteristics of field-
    aligned currents associated with substorms. J. Geophys Res.
    83(A2), 599-615.
    Kaufmann, R. L., 1987. Substorm currents: Growth phase and onset. J.
    Geophys. Res., 92(A7), 7471–7486.
    Kamide, Y., 1978. On current continuity at the Harang discontinuity.
    Planet. Space Sci., 26, 237-244.
    Kamide, Y., A. D. Richmond, and S. Matsushita, 1981. Estimation of
    ionospheric electric fields, ionospheric currents and field-aligned
    current from ground magnetic records. J. Geophys. Res., 86, 801-
    813.
    Kan, J. R., L. Zhu, and S.-I. Akasofu, 1988. A theory of substorm: Onset
    and subsidence. J. Geophys. Res. 93(A6), 5624-5640.
    Kelley, M.C., 1989. The Earth’s Ionosphere, Academic Press, New York.
    Lu, G., G.L. Siscoe, A. D. Richmond, T. I. Pulkkinen, N. A. Tsyganenko,
    H. J. Singer, and B. A. Emery, 1997. Mapping of the ionospheric
    field-aligned currents to the equatorial magnetosphere. J.
    Geophys. Res.102(A7), 14,467-14,476.
    Luhmann, J. G., and R. C. Elphic, 1985. On the dynamo generation of
    Flux ropes in the Venus ionosphere. J. Geophys. Res., 90(A12),
    12,047-12,056.
    Lyu, L. H., and M. Q. Chen, 2000. A kinetic M-I coupling with unloading
    instability at onset of substorm. 5th International Conference on
    Substorms, St. Petersburg, Russia, May 16-20, 2000.
    Lyu, L. H., 2014. Elementary Space Plasma Physics Second Edition.
    Airiti Press, Taipei.
    McPherron, R. L., 1995. Magnetospheric Dynamics, in Introduction to
    Space Physics, edited by M. G. Kivelson and C. T. Russell, pp.
    400-458, Cambridge University Press, New York.
    Spiro, R. W., P. H. Reiff, and L. J. Maher, Jr., 1982. Precipitating electron energy flux and auroral zone conductance-An empirical model, J. Geophys. Res., 87(A10), 8215-8227.
    Zmuda, A. J. and J. C. Armstrong, 1974. The diurnal flow pattern of field-aligned current. J. Geophys. Res., 79, 4611-4619.

    QR CODE
    :::