跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林元媛
Yuan-Yuan Lin
論文名稱: 粒徑大小對奈米銀自發磁性之影響
The spontaneous magnetism of silver nanoparticles by particle size
指導教授: 李文献
Wen-Hsien Li
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: 粒徑大小自發磁性奈米銀
外文關鍵詞: particle size, spontaneous magnetism, silver nanoparticle
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對平均粒徑1.8 nm、3.5 nm、6.9 nm和9.7 nm的銀樣品,使其在各個不同的溫度下改變外加磁場,進行磁化率量測實驗,探討粒徑大小對其自發磁性之影響,並用朗之萬函數進行磁化曲線擬合。本研究使用熱蒸鍍冷凝法製備奈米銀顆粒,利用X光繞射圖譜來判定粒徑大小。
    和塊材銀的微弱反磁現象不同,奈米銀由於單位體積的表面積增加而產生自旋極化,有明顯的順磁和反磁現象,在1.8 K時1.8奈米的樣品飽合磁化強度約為其它較大粒徑的樣品(從3.5奈米到9.7奈米)的6到13倍且其反磁現象也較強烈;而在300 K時1.8奈米的樣品飽合磁化強度則為其它較大樣品的4到7倍。由修正過的朗之萬函數加上修正反磁項擬合所得到不同粒徑大小樣品的磁化曲線圖擬合良好。


    This paper discussed the size of silver nanoparticles influences their susceptibility. On the average particle diameter of 2.8 nm, 4.5 nm, 12 nm and 21 nm nano-silver and bulk silver, compared their different temperatures while changing the applied magnetic field, measured their conducting magnetization rate and magnetization intensity to explore the particles size of the spontaneous magnetic effects and magnetization curve fitting. This study was prepared using thermal evaporation condensation nano silver particles, using X-ray diffraction to determine the particle size.
    And nano-silver reacts differently the non-magnetized bulk silver; its surface area per unit volume increases the spin polarization phenomena which have the results in significant paramagnetic and diamagnetic phenomena. at the saturation magnetization of 1.8 nm nanosilver samples is about 6 to 13 times of other larger samples (from 3.5 nm to 9.7 nm) at 1.8 K, and the phenomenon of their diamagnetic relatively strong; they have similar phenomena at 300 K and 1.8 K, the saturation magnetization of 1.8 nm nanosilver sample is about 4-7 times of other larger nanosilver sample. After the correction of the .Langevin function with diamagnetic correction, the fitting graphs of different particle size nanosilver show good fit.

    摘要………………………………………i Abstract…………………………………..ii 致謝………………………………………iii 目錄………………………………………iv 圖目與表目………………………………v 第一章 簡介………………………………1 1-1 塊材銀之基本物理性質…………………………1 1-2 奈米銀之基本物理性質…………………………3 第二章 樣品製備與量測儀器介紹………4 2-1 樣品製備…………………………………………4 2-2 粒徑分析…………………………………………7 2-3 磁化率量測………………………………………22 第三章 磁性分析理論 …………………25 3-1 奈米顆粒的順磁和反磁現象……………………25 3-2 磁化強度對外加磁場強度分佈的理論…………27 3-3 熱誘發對顆粒磁矩之影響 ……………………..33 第四章 樣品磁性分析探討……………38 4-1 粒徑大小、磁化強度與外加磁場………………38 4-2 磁化強度對外加磁場強度分佈理論的擬合……43 4-3 不同粒徑不同溫度之磁特性……………………57 4-4 粒徑大小對各參數變化的影響…………………64 第五章 結論……………………………68 參考文獻…………………………………70

    [1] 姜壽亭、李衛,凝聚態磁性物理,科學出版社,2003。
    [2] 龔建華,你不可不知的奈米科技,世茂出版社:奈米材料的應用
    [3] 尹邦躍、張勁燕,奈米時代,五南出版社:奈米材料的應用
    [4] M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).
    [5] P. Cheyssac, R. Kofman, G. Mattei, P. G. Merli, A. Migliori, and A. Stella, Superlattices and Microstructures 17, 47 (1995).
    [6] 陳正雍,奈米金粉粒的原子結構及吸收光譜與粒徑關係探討,中央大學碩士論文:
    [7] 吳泰伯、許樹恩,X 光繞射原理與材料結構分析,三版,中國材料科 學學會,2004。
    [8] Charles Kittel, Introduction to Solid State Physics,8th edition, John Wiley & Sons, Inc, 2005.
    [9] 許樹恩、吳泰伯,X 光繞射原理與材料結構分析,國科會精儀中心
    [10] 王進威,擬合X光繞射峰形判定奈米微粒粉末的粒徑分佈,國立中央大學碩 士論文(2006).
    [11] José S. Garitaonanadia, Maite Insausti, Eider Goikolea, Motohiro Suzuki, John D. Cashion, Naomi Kawamura, Hitoshi Ohsawa, Izaskun Gil de Muro, Kiyonori Suzuki, Fernando Plazaola, and Teofilo Rojo, Nano Lett. Vol.8, No.2 661-667 (2008)
    [12] 吳勝允、李文獻,物理雙月刊,二十八卷五期(2006).
    [13] H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake, and S. Yamada,Phys. Lett. A 263, 406 (1999).
    [14] B. Sampedro, P. Crespo, A. Hernando, R. Litrán, J. C. Sánchez López, C. López Cartes, A.Fernandez, J. Ramírez, J. González Calbet, and M. Vallet,Phys. Rev. Lett. 91, 237203 (2003)
    [15] V. Kumar and Y. Kawazoe, Eur. Phys. J. D 24, 81 (2003).
    [16] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801 (2004).
    [17] Manoj K. Harbola, and Viraht Sahni, Phys. Rev. B .37, 745 (1988).
    [18] V. Sahni, and K.-P. Bohnen, Phys. Rev. B 29, 1045 (1984).
    [19] V. Sahni, and K.-P. Bohnen, Phys. Rev. B 31, 7651 (1985).
    [20] G. M. Pastor, J. Dorantes-Dávila, and K. H. Bennemann, Phys. Rev. B 40,
    [21] J. Jing, X. Yang, Y. Hsia, and U. Gonser, Surf. Sci. 233, 351 (1990).
    [22] M.Pereiro, D. Baldomir, and J. E. Arias, Phys. Rev. A 75, 063204 (2007).
    [23] C.P. Bean and I.S. Jacobs. Magnetic granulometry and super-paramagnetism. J. Appl. Phys., 27 1448, 1956. :
    [24] 姜壽亭、李衛,凝聚態磁性物理,科學出版社(2003).
    [25] B. D. Cullity, INTRODUCTION TO MAGNETIC MATERIALS, (1984).
    [26] 陳志瑋,調控鎳奈米微粒粉末的磁化強度,國立中央大學碩士論文(2006).
    [27] Nicola A. Spaldin, Magnetic Materials, 2002.
    [28] M. El-Hilo, R. W. Chantrell, and K. O’Grady, J. Appl. Phys. 84, 5114 (1998)
    [29] R. W. Chantrell, N. Walmsley, J. Gore, and M. Maylin, Phys. Rev. B 63, 024410 (2000)
    [30] N. J. O. Silva, V. S. Amaral, and L. D. Carlos, Phys. Rev. B 71, 184408 (2005)
    [31] S. Mørup and B. R. Hansen, Phys. Rev. B 72, 024418 (2005).
    [32] Steen Mørup and Cathrine Frandsen, Thermoinduced Magnetization in Nanoparticles of Antiferromagnetic Materials, Phys. Rev. Lett 92, 217201 (2004).
    [33] S.H. Kilcoyne and R. Cywinski, “Ferritin:a model superparamagnet,” J. Magn.Magn. Mater. 140-144 1466 (1995).。
    [34] J. G. E. Harris, J. E. Grimaldi, and D. D. Awschalom,“Excess spin and the dynamics of antiferromagnetic ferritin,” Phys. Rev. B 60, 3453 (1999).
    [35] M. S. Seehra, V. S. Babu, and A. Manivannan, “Neutron scattering and magnetic studies of ferrihydrite nanoparticles,” Phys. Rev. B 61, 3513(2000).
    [36] Steen Mørup and Britt Rosendahl Hansen, “Uniform magnetic excitations in nanoparticles,” Phys. Rev. B 72, 024418 (2005).
    [37] Paolo Allia, Marco Coisson, Paola Tiberto, Franco Vinai, Marcelo Knobel, M. A.Novak, and W. C. Nunes, “Granular Cu-Co alloys as interacting superparamagnets,” Phys. Rev. B 64, 144420 (1984).
    [38] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801 (2004).
    [39] H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, and M.Miyake, Phys. Rev. B 69, 174411 (2004).
    [40] Neil W. Ashcroft and N. David Mermin, Solid State Physics(Cornell University)

    QR CODE
    :::