| 研究生: |
洪祥益 Siang-Yi Hong |
|---|---|
| 論文名稱: |
單面及雙面旋性聚合物穩固藍相液晶之光電特性 Electro-optical properties of single- and double-side chiral polymer-stabilized blue phase liquid crystals |
| 指導教授: |
鄭恪亭
Ko-Ting Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 藍相液晶 、旋性聚合物 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藍相液晶最初被發現時僅存在於相當窄小的溫度範圍,而至今已有許多使藍相液晶存在溫度範圍拓寬的方法被提出,其中由日本H. Kikuchi教授團隊所提出的高分子聚合物穩固藍相液晶(Polymer-stabilized blue phase liquid crystals)為目前最常被利用於拓寬藍相液晶存在溫度範圍的方法。本實驗室於2016年提出相較於Kikuchi教授團隊不同的拓寬藍相液晶存在溫度範圍的方法,此為表面穩固藍相液晶(Surface-stabilized blue phase liquid crystals),而本論文將探討於兩種不同聚合方式對於藍相液晶光電特性之影響。
在實驗過程中,將高分子聚合物穩固藍相液晶於不同照光時間之製程下,量測其藍相液晶施加不同電壓時的穿透度、雙折射、反應時間及晶格變化,且搭配表面聚合物穩固藍相液晶之穩固方法,以獲得與先前完全不同的光電特性,此外,因使用電極交錯排列的橫向電場基板會於光出射端造成繞射圖樣,為此比較兩者對於繞射效率及繞射圖樣之改變。最後,我們由兩種聚合物穩固後的新機制獲得不同的光電特性,但仍存在一些疑慮,若未來可朝此持續改善,相信對於藍相液晶未來之技術發展能有相當大的助益。
One of the advantages of blue phase liquid crystals (BPLCs) is the property of fast response. However, the intrinsic temperature range of BPLCs is too narrow to be applied for real application. To expand the temperature range of BPLCs, several methods have been proposed. Among them, in 2002, Kikuchi et al. proposed a useful method to expand the temperature range of BPLCs based on polymer stabilization technique, which is the most commonly used method to widen the temperature range of BPLCs. In 2016, our lab proposed another method to broaden the temperature range of the BPLCs by surface stabilization technique. In this study, a comparison of electro-optical (EO) properties between the polymer stabilized (PS) BPLCs and the surface stabilized (SS) BPLCs will be made. Moreover, some characteristics of EO properties of SSBPLCs and PSBPLCs will also be demonstrated.
The study can be divided into three parts. First, we will discuss the change of effective refractive index difference of PSBPLCs under various applied voltages, whose direction is perpendicular to the substrate, by an inclined input light beam. Second, we will discuss the method to decrease the operation voltage of PSBPLCs. The operation voltage is high/low with/without adding photo-initiator in PSBPLCs. Third, the polarization dependent diffraction patterns and efficiencies of PSBPLCs and SSBPLCs will also be investigated. In the second and third parts of experiments, we will show that the optical hysteresis effect of SSBPLCs is smaller than that of PSBPLCs. Moreover, the response time of PSBPLCs/SSBPLCs in the second and third experiments will also be investigated.
We believe that the investigation in this study will be a useful reference to further studies of the SSBPLCs/PSBPLCs. Either the SSBPLCs or PSBPLCs have great potential to be applied for optical devices, such as LC display, grating, etc.
[1] F. Reinitzer, “Beitrage zur kenntiniss des cholesterins,” Monatsh. Chem. 9, 421 (1888).
[2] O. Lehman, “On flowing crystal,” Z. Phys. Chem. 4, 462 (1889).
[3] 松本正一、角田市良合著,劉瑞祥譯,液晶之基礎與應用,國立編譯館出版 (1996)
[4] S. M. Morris, M. M. Qasim, K. T. Cheng, F. Castles, D. H. Ko, D. J. Gardiner, S. Nosheen, Y. D. Wilkinson, H. J. Coles, C. Burgess, and L. Hill, “Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal,” Appl. Phys. Lett. 103, 101105 (2013).
[5] M. Gu, Cholesteric Liquid Crystal Reflective mode, retrieved from http://www.personal.kent.edu/~mgu/LCD/chlc.htm ( 2011).
[6] David J. Griffiths, Introduction to Electrodynamics (3rd ed.), Prentice Hall: pp. 175, 179–184, 1998
[7] P. J. Collings and M. Hird, Introduction to liquid crystals chemistry and physics, CRC Press, London (1997).
[8] P. P. Crooker, “Blue Phase” in Chirality in liquid crystals, Springer Verlag, New York (2001).
[9] C. Bohley and T. Scharf, “Polarization of light reflected by cholesteric blue phase,” J. Opt. A: Pure Appl. Opt. 6, S77 (2004).
[10] 陳可邦,「中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究」,國立中央大學,碩士論文,民國105年
[11] H. Kikuchi, “Liquid Crystalline Blue Phases,” Struct Bond 128, 99 (2008).
[12] H. Stark, and H. R. Trebin, “Theory of electrostriction of liquid-crystalline blue phases I and II,” Physical Review A, 44, 4 (1991)
[13] G. Heppke, B. Jérôme, H. S. Kitzerow, P. Pieranski “Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy,” J. Phys. France 50, 2991 (1989).
[14] S.-Y. Lu and L.-C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35, 562 (2010)
[15] 鄭恪亭-液晶光電材料及其應用
[16] J. L. Zhu, S. B. Ni, Y. Song, E. W. Zhong, Y. J. Wang, C. P. Chen, Z. Ye, G. He, D. Q. Wu, X. L. Song, J. G. Lu, and Y. Su, “Improve Kerr constant and response time of polymer-stabilized blue phase liquid crystal with a reactive diluent,” Appl. Phys. Lett 102, 071104 (2013)
[17] 黃琬翎,「摻雜偶氮材料在藍相液晶中之光電特性偏光顯微鏡」,國立成功大學,碩士論文,民國100年。
[18] H. Kikuchi, “Blue Phases for LCDs Based on Isotropic-to-Anisotropic Transitions”, Information Display Online, retrieved from http://informationdisplay.org/IDArchive/2009/November/FrontlineTechnologyBluePhasesforLCDsBasedo.aspx
[19] 陳亭惠,「藍相液晶摻雜旋性聚合物之表面穩定效應之研究碩論」,國立中央大學,碩士論文,民國105年
[20] C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99, 041108 (2011).
[21] J. Thoen, “Adiabatic scanning calorimetric results for the blue phases of cholesteryl nonanoate,” Phys. Rev. A 37, 1754 (1988).
[22] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer- stabilized liquid crystal blue phases,” Nat. Mater. 1, 64 (2002).
[23] F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Bluephase templated fabrication of threedimensional nanostructures for photonic applications,” Nat. Mater. 11, 599 (2012).
[24] E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases.” Phys. Rev. E 81, 041703 (2010).
[25] R. J. Miller, H. F. Gleeson, “Lattice Parameter Measurements from the Kossel Diagrams of the Cubic Liquid Crystal Blue Phases,” J. Phy II. France 6, 909922 (1996).
[26] Dong Chen, Michael R. Tuchband, Balazs Horanyi, Eva Korblova, David M. Walba, Matthew A. Glaser, Joseph E. Maclennan, and Noel A. Clark, “Diastereomeric liquid crystal domains at the mesoscale”, Nature Communications 6, 7763 (2015).
[27] J. W. Li, G. J. Bie, A. A. Gao, W. S. Du, Z. w. An, C. Gao, J. Li, and M. G. Hu, “Advances on monomers used in polymer stabilized blue phase liquid crystal,” Chin. J. Liq. Cryst. Displays , 31, 10072780 (2016).
[28] Chemblink, “Paliocolor LC 756 " in "Online Database of Chemical from Around the World,” retrieved from
http://www.chemblink.com/products/223572-88-1.htm (2014).
[29] SIGMA-ALDRRICH, retrieved from
http://www.sigmaaldrich.com/catalog/product/aldrich/196118
[30] 王郁茵,「膽固醇藍相液晶之菲列斯涅耳透鏡光電特性之研究」,國立中山大學,碩士論文,民國99年。
[31] D. Xu, J. Yan, J. Yan, J. Yuan, F. Peng, Y. Chen, and S. T. Wu, “Electro-optic response of polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett 105, 011119 (2014)
[32] H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[33] H. Y. Liu, C. T. Wang, C. Y. Hsu, and T. H. Lin, “Pinning effect on the photonic bandgaps of blue-phase liquid crystal,” Appl. Optics 50, 1606 (2011)
[34] R. Manda, S. Pagidi, S. S. Bhattacharyya, C. H. Park, Y. J. Lim, J. S. Gwag, and S. H. Lee, “Fast response and transparent optically isotropic liquid crystal diffraction grating,” Opt. Express 25, 24035 (2017)
[35] Y. Yuan, T. Li, C. P. Chen, S. Liu, N. Rong, W. Li, W. Li, P. Zhou, J. Lu, R. Liu, and Y. Su, “Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light,” Opt. Express 23, 20007 (2015)
[36] H. J. Coles and M. N. Pivnenko, “Liquid crystal blue phase with a wide temperature range,” Nature 436, 997 (2005)
[37] A.Y. G. Fuh, C. Y. Huang, C. K. Liu, Y. D. Chen, and K. T. Cheng, “Dual liquid crystal alignment configuration based on nanoparticle-doped polymer films,” Opt. Express 19, 11825 (2011).
[38] J. R. Marciante, N. O. Farmiga, J. I. Hirsh, M. S. Evans, H. T. Ta, “Optical measurement of depth and duty cycle for binary diffraction gratings with subwavelength features,” Appl. Optics 42, 3234 (2003)