跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊立群
Li-chyung Yang
論文名稱: 高速高功率單模態850nm波段面射型雷射
High speed,high power,single mode 850nm wavelength vertical cavity surface emitting lasers
指導教授: 許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 78
中文關鍵詞: 半導體雷射面射型雷射
外文關鍵詞: vertical-cavity surface-emitting laser, semiconductor laser
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用鋅擴散製作出850nm波段的單模態面射型雷射,而沒有利用一般縮小氧化孔徑之方法來產生單模態,這可以減小元件之熱效應。我們氧化孔徑為9μm的元件,頻寬能達到8GHz,有一個較小的微分電阻為47Ω,最大輸出功率為3mW,而在不同電流注入時,頻譜也都是維持單模態,且頻譜我們是在動態調制下量測。而我們所製作出來的單模面射型雷射在本質頻寬方面也比我們所製作出來的多模面射型雷射來的大(31GHz vs. 17GHz)。且我們的單模面射型雷射有比較窄的發散角(80 vs. 200) ,且單模的面射型雷射在調準限度(alignment tolerance)方面也有比較好的表現。


    By utilizing the Zn-diffusion technique, we demonstrate a single-mode 850nm vertical-cavity surface-emitting laser (VCSEL) without greatly downscaling the diameter of oxide-confined aperture to minimize the thermal effect. The demonstrated device with a 9 μm active diameter can attain an 8GHz bandwidth, a
    small differential resistance (~47Ω47Ω), a 3mW maximum output power, and sustain the
    single-mode characteristic under dynamic operation and whole range of bias current.
    According to the dynamic measurement results, our single-mode device can
    eliminate the damping-limited bandwidth,which was observed in our multi-mode
    control without the Zn-diffusion aperture, and has a larger intrinsic bandwidth
    (31GHz vs. 17GHz) due to the elimination of mode competition effect. The
    narrower divergence angle (80 vs. 200) means that the device exhibits a larger
    alignment tolerance and much lower coupling loss when used with the standard
    multi-mode fiber than those of the control sample.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VII 表目錄 XI 第一章 序論 1 1-1 簡介 1 1-2 1-2 VCSEL 的磊晶結構 4 1-3 1-3 典型面射型雷射之介紹 6 1-4 1-3-1 氧化物侷限之面射型雷射 6 1-3-2 離子佈植方式之面射型雷射 7 1-4 單模850nm 波段VCSEL 應用於光連結 8 第二章 理論 10 2-1 鋅擴散於DBR 10 2-2 VCSEL 的選擇性水氧化理論 14 2-3 發散角 17 第三章 實驗 19 3-1 鋅擴散製程 19 3-2 水氣氧化 23 3-3 製作p-type 和n-type 電極以及金屬回火 26 3-4 平坦化及製作金屬接線 30 3-5 實驗設備 33 3-5-1 鋅擴散 33 3-5-2 水氧化 34 第四章 結果與討論 35 4-1 量測系統 35 4-1-1 電流對電壓(I-V)的量測 35 4-1-2 輸出光功率對電流(L-I)之量測 35 4-1-3 發散角(Divergence Angle)之量測系統 36 4-1-4 近場投影 37 4-1-5 頻譜(Spectrum)之量測 37 4-1-6 頻寬(Bandwidth)之量測 38 4-3 氧化型VCSEL 量測結果 39 4-3-1 電流電壓I-V 曲線 39 4-3-2 輸出光功率對電流(L-I)曲線 40 4-3-3 二維(2-D)遠場模態 41 4-3-4 發散角 42 4-3-5 頻譜圖 43 4-3-6 頻寬之量測結果 45 4-4 氧化型合併鋅擴散VCSEL 量測結果 46 4-4-1 電流電壓I-V 曲線 46 4-4-2 輸出光功率對電流(L-I)曲線 47 4-4-3 二維(2-D)遠場模態 48 4-4-4 發散角 49 4-4-5 頻譜圖 50 4-4-6 頻寬(Bandwidth)之量測結果 51 4-5 參數模擬及不同結構比較 53 4-5-1 S11 參數模擬 53 4-5-2 K 參數(K parameter)模擬 55 4-5-3 元件之調準限度(Alignment tolerance)比較 56 第五章 結論 58 參考資料 60

    [1] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp.2329-2330, 1979.
    [2] K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, “Room-temperature pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser,” Appl. Phys. Lett., vol. 45, pp. 348-350, 1984.
    [3] F. Mederer, R. Jäger, J. Joos, M. Kicherer, R. King, R. Michalzik, M. Riedl, H. Unold, and K.J. Ebeling , “Improved VCSEL Structures for 10 Gigabit-Ethernet and Next Generation Optical-Integrated PC-Boards,” Electronic Components and Technology Conference , 2001, , p 1-7
    [4] L. A. Coldren, and S. W. Corzine, Chapter 3 “Diode Lasers and Photonic Integrated Circuits,” Wiley, New York, 1995.
    [5] N. N. Ledentsov, “Long-wavelength quantum-dot lasers on GaAs substrates: From media to device concepts,” IEEE J. Select. Topics Quantum Electron., vol 8, n 5, pp. 1015-1024, Sep-Oct, 2002
    [6] H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett. vol. 69, pp. 3140-3142, Nov, 1996.
    [7] K.L.Lear, K. D. Choquette, R. P. Schneider, Jr., and S. P. Kilcoyne, “Modal Analysis of a small surface emitting laser with a selectively oxidized waveguide” Appl.Phys. Lett. 66, p.2616 ,1995
    [8] F. A. Kish, S. J. Caracci, N. Holonyak,Jr.,J. M. Dallesasse, K. C. Hsieh, M. J. Ries, S. C. Smith, and R. D. Burnham, “Planar native-oxide index-guided AlxGa1-xAs quantum well heterostructure lasers.” Appl. Phys. Lett., 59, pp.1755-1757, 1991
    [9] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement.” Appl. Phys. Lett., 66, pp.1723-1725, 1995
    [10] B. M. Hawkins, R. A. Hawthorne, III, J. K. Guenter, J. A. Tatum, and J. R. Biard, “Reliability of various size oxide aperture VCSELs,” Proc. Conf. 52nd Electronic Components and Technology., pp. 540–550, 2002.
    [11] K. Tai, R. J. Fischer, K. W. Wang, S. N. G. Chu, and A. Y. Cho, “Use of implant isolation for fabrication of vertical-cavity surface-emitting laser diodes,”Electronics Letters, 25, 1644-1645,1989
    [12] Naofumi Suzuki, Hiroshi Hatakeyama, Member, IEEE, Keiichi Tokutome, Kimiyoshi Fukatsu, Mitsuki Yamada, Takayoshi Anan, and Masayoshi Tsuji, “1.1μm-Range InGaAs VCSELs for High-Speed Optical Interconnections,” IEEE Photon. Technol. Lett., v 18, n 12, Jun 15, 2006, p 1368-1370
    [13] Dieter Wiedenmann, Roger King, Christian Jung, Roland J¨ager, Rainer Michalzik, Peter Schnitzer, Student Member, IEEE, Max Kicherer, and Karl J. Ebeling, Senior Member, IEEE, “Design and Analysis of Single-Mode Oxidized VCSEL’s for High-Speed Optical Interconnects,” IEEE Journal on Selected Topics in Quantum Electronics, v 5, n 3, 1999, p 503-511
    [14] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. of SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007.
    [15] F. Mederer, I. Ecker, J. Joos, M. Kicherer, H. J . Unold, K. J. Ebeling, M. Grabherr, R. Jäger, R. King, and D. Weidenmann, “High Performance Selectively Oxidized VCSELs and Arrays for Parallel High-Speed Optical Interconnects,” IEEE Transactions on Advanced Packaging, vol. 24, pp. 442-449, Nov., 2001.
    [16] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001.
    [17] A. Larsson, C. Carlsson, J. S. Gustavsson, Å. Haglund, P. Modh, and J. Bengtsson, “Direct high-frequency modulation of VCSELs and applications in fibre optic RF and microwave link.” New Journal of Physics 6, Nov. 2004. Invited paper.
    [18] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures.”Journal of Applied Physics ,73, pp3769-3781 , 1993.
    [19] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion ” J. Appl. Phys.55, p.607, 1984.
    [20] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion“ Appl.Phys.Lett.38,776, 1981.
    [21] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice”Semicond. Sci. Technol., 4, pp.841-846, 1989.
    [22] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 , 民國90年
    [23] R. G. Hunsperger, Integrated Optics:Theory and Technology, Hong Kong, Springer-Verlag, 77, 1992.
    [24] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett. 47, p.1193, 1985.
    [25] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
    [26] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon”, J. Appl. Phys., Vol. 36, p. 3770, 1965.
    [27] M. Ochiai et al., Appl. Phys. Lett., 68, 1898.
    [28] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively xidized Vertical-Cavity Lasers” Photon. Tech. Lett. 7, 1237, 1995.
    [29] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent #5,262,360 , 1993.
    [30] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69, 1935-1837 , 1996.
    [31] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, pp.740-742, 1996.
    [32] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,”Appl. Phys. Lett., vol 66, pp.1723-1725, 1995.
    [33] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
    [34] C. C. Chen, S. J. Liaw, and Y. J. Yang, Member, IEEE, “Stable Single Mode Operation of an 850nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion.” Photon. Tech. Lett. 13, p266, 2001.
    [35] C. C. Chen, S. J. Liaw, and Y. J. Yang, Member, IEEE, “Stable Single Mode Operation of an 850nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion.” Photon. Tech. Lett. 13, p266, 2001.
    [36] Y H Chang, Fang-I Lai, C Y Lu, H C Kuo, H C Yu, C P Sung, H P Yang and S C Wang, Semicond Sci. Technol. 19(2004) L74-L77
    [37] Naofumi Suzuki, Hiroshi Hatakeyama, Member, IEEE, Keiichi Tokutome, Kimiyoshi Fukatsu, Mitsuki Yamada, Takayoshi Anan, and Masayoshi Tsuji, IEEE Photon. Thch.Lett. vol.18, no. 12 JUNE 15, 2006, pp. 1368- 1370
    [38] A.N. AL-Omari, Member, IEEE, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, Member, IEEE, IEEE Photon. Technol. Lett. vol. 18, no. 11, pp.1225-1227
    [39] K.L. Lear, V.M. Hietala, H.Q. Hou, M. Ochiai, J.J. Banas, B.E. Hammons, J. Zolper, S.P. Kilcoyne, Advances in Vertical Cavity Surface Emitting Lasers in series OSA Trends in Optics and Photonics, vol. 15, pp. 69–74, 1997.

    QR CODE
    :::