跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃崇瑋
Chung-Wei Huang
論文名稱: 以高斯-牛頓與內爾德-米德非線性最小平方法用於無線感測網路之目標物定位
Gauss-Newton and Nelder-Mead Nonlinear Least Squares Methods for Target Localization in Wireless Sensor Networks
指導教授: 張大中
Dah-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 68
中文關鍵詞: 無線感測網路最小平方法高斯牛頓法目標物定位
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測網路(WSNs) 是由具有感測能力、計算能力及無
    線通信能力的感測器所組成,這些感測器具備著體積小、低成本、
    低功耗的特性,在感測器有著前述的特性之下,本篇研究是以接
    收訊號強度(RSS) 等數據並且對其做量化(Quantization),處理中心
    (Fusion center) 以此量化訊號(Quantized data) 並利用最小平方估計
    法做定位,當量化階數少的時候,為了降低量化誤差造成目標函式
    過多的誤差,在最小平方估計裡加入μ − law 壓縮原始訊號,得到
    不錯的效果;這裡的問題屬於非線性最小平方估計,研究中也依
    據高斯-牛頓法以及NM-單純形搜索法解決此最佳化問題;在量化臨界值(Quantization threshold) 上,利用Numirical 方式提出適合最
    小平方估計的最佳量化臨界值,其均方根(Root Mean Square, RMS)
    位置誤差也接近MLE 以及CRLB;此外,並延伸出找到適合所有
    位置的量化臨界值,使用在此最小平方估計問題中。


    Wireless sensor networks (WSNs) conventionally consist of
    a large number of low-cost, low-power, densely distributed, and mostly heterogeneous sensors. For the localization application, the target signal strength in a WSN is usually reported by sensors with quantized levels and all quantized data are collected in a fusion center to estimate the target
    location based on a nonlinear relationship between distance and signal strength. Instead of using the computation-intensive maximum likelihood (ML) method, we study the least squares method by which the least squares cost function is significantly deteriorated due to nonlinear parameter estimation. To solve this problem, the μ-law compression technique is considered for robust position estimation. Two nonlinear least squares estimation methods, Gauss-Newton and Nelder-Mead, are discussed in our work. Numerical results show that the proposed method can achieve
    a good mean square error performance close to the ML method with lower computation loading.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 第1 章序論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 章節架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第2 章系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 功率衰減模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 利用量化訊號做位置估計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 最大概似估計(MLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 第3 章非線性最小平方估計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 利用量化訊號做非線性最小平方估計. . . . . . . . . . . . . . . . . . . . . 11 3.2 非線性最小平方估計的最佳化方法. . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 依疊代法-高斯牛頓法解決非線性最小平方估計問題. . . . 23 3.2.2 依搜索法-單純型搜索法解決非線性最小平方估計問題. . 25 3.3 量化臨界值. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 適合最大概似估計法的量化臨界值. . . . . . . . . . . . . . . . . . . 29 3.3.2 適合最小平方估計法的量化臨界值. . . . . . . . . . . . . . . . . . . 30 第4 章系統模擬與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 演算法複雜度比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 第5 章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 附錄A:高斯-牛頓法雅可比矩陣微分過程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 附錄B:CRLB 證明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    [1] F. Z. S. Kumar and E. D. Shepherd, “Special issue on
    collaborative signal and information processing in
    microsensor networks,”IEEE Signal Process. Mag., vol.
    19, Mar.2002.
    [2] K. Chakrabarty, S. Iyengar, H. Qi, and E. Cho, “Grid
    coverage for surveillance and target location in
    distributed sensor networks,”IEEE Transactions on
    Computers, vol. 51, no. 12, pp. 1448–1453, Dec 2002.
    [3] K. Yang, G. Wang, and Z.-Q. Luo, “Efficient convex
    relaxation methods for robust target localization by a
    sensor network using time differences of
    arrivals,”IEEE Transactions on Signal Processing,
    vol. 57, no. 7, pp. 2775 –2784, July 2009.
    [4] K. Yao, R. Hudson, C. Reed, D. Chen, and F.
    Lorenzelli, “Blind beamforming on a randomly
    distributed sensor array system,”IEEE J.Sel. Areas
    Commun., vol. 16, no. 8, pp. 1555 –1567, Oct 1998.
    [5] N. Patwari and A. O. Hero, “Using proximity and
    quantized RSS for sensor localization in wireless
    networks,”in Proc. 2nd Int. ACM Workshop on Wireless
    Sensor Networks and Applications, San Diego, CA, pp.
    20–29, Sep 2003.
    [6] X. Sheng and Y.-H. Hu, “Maximum likelihood multiple-
    source localization using acoustic energy measurements
    with wireless sensor networks,”IEEE Transactions on
    Signal Processing, vol. 53, no. 1,pp. 44 –53, Jan.
    2005.
    [7] X. Kuang and H. Shao, “Maximum likelihood localization
    algorithm using wireless sensor networks,”First
    International Conference on Innovative Computing,
    Information and Control, ICICIC 2006., vol. 3, pp.
    263 –266, 2006.
    [8] D. Li, K. Wong, Y. H. Hu, and A. Sayeed, “Detection,
    classification, and tracking of targets,”IEEE on
    Signal Processing Magazine,vol. 19, no. 2, pp. 17 –29,
    Mar 2002.
    [9] R. Niu and P. Varshney, “Target location estimation in
    wireless sensor networks using binary data,”in Proc.
    Ann. Conf. Inf. Sci. Syst.(CISS2004), Princeton, NJ,
    2004.
    [10] –––, “Target location estimation in sensor networks
    with quantized data,”IEEE Transactions on Signal
    Processing, vol. 54, no. 12, pp.
    4519 –4528, Dec. 2006.
    [11] K. Cheung, H. So, W.-K. Ma, and Y. Chan, “Least
    squares algorithms for time-of-arrival-based mobile
    location,”IEEE Transactions on Signal Processing,
    vol. 52, no. 4, pp. 1121 –1130, April 2004.
    [12] E. Kim and K. Kim, “Distance estimation with weighted
    least squares for mobile beacon-based localization in
    wireless sensor networks,”IEEE Signal Processing
    Letters, vol. 17, no. 6, pp. 559 -562, June 2010.
    [13] H. C. So and L. Lin, “Linear least squares approach
    for accurate received signal strength based source
    localization,”IEEE Transactions on Signal Processing,
    vol. 59, no. 8, pp. 4035 –4040, Aug.2011.
    [14] A. Bjorck, Numerical Methods for Least Squares
    Problems. SIAM,Dec.1996.
    [15] K. M. R. G. V. Reklaitis, A. Ravindrad, Engineering
    optimization methods and applications. John Wiley &
    Sons, 1983.
    [16] Y. H. Hu and D. Li, “Energy based collaborative
    source localization using acoustic micro-sensor
    array,”in IEEE Workshop on Multimedia Signal
    Processing, Dec. 2002, pp. 371 –375.
    [17] T. Pham, B. Sadler, and H. Papadopoulos, “Energy-
    based source localization via ad-hoc acoustic sensor
    network,”in IEEE Workshop on Statistical Signal
    Processing, Sep. 2003, pp. 387 –390.
    [18] O. Ozdemir, R. Niu, and P. Varshney, “Channel aware
    target localization with quantized data in wireless
    sensor networks,”IEEE Transactions on Signal
    Processing, vol. 57, no. 3, pp. 1190 –1202,March 2009.
    [19] S. M. Kay, Fundamentals of Statistical Signal
    Processing - Estimation Theory. Prentice Hall, 1993.
    [20] B. W. J. Emmanuel C. Ifeachor, Digital Signal
    Processing - A Practical Approach. Prentice Hall, 2002.
    [21] H. G. R. Spendley, W. and F. R.Himsworth, “Sequential
    application of simplex designs in optimisation and
    evolutionary operation,”IEEE Transactions on
    Vehicular Technology, vol. 4, no. 3, pp. 441–461,
    March 1962.
    [22] M. H. W. Jeffrey C.Lagarias, James A. Reeds and P. E.
    Wright,“Convergence properties of the nelder-mead
    simplex method in low dimensions,”SIAM Journal of
    Optimization, vol. 9, pp. 112–147,1998.
    [23] R. Niu and P. Varshney, “Performance analysis of
    distributed detection in a random sensor field,”IEEE
    Transactions on Signal Processing,vol. 56, no. 1, pp.
    339 –349, Jan. 2008.

    QR CODE
    :::