| 研究生: |
張玉 Zhang Yu |
|---|---|
| 論文名稱: |
利用渲染方法改善 HEVC 畫面內預測之研究 Improving HEVC Intra Prediction with Inpainting Method |
| 指導教授: | 林銀議 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | HEVC 、幀內預測算法 、渲染算法 |
| 外文關鍵詞: | HEVC video coding, intra frame prediction, inpainting |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
HEVC 是以H.264/AVC 為基礎的最新制定的影像壓縮標準。在這個標準中應用了很多有效的壓縮算法,能夠用很少的位元率來表示一段影像。HEVC 的幀內預測算法增加了預測模式,改善了預測的準確度,能夠獲得比H.264/AVC 更好的壓縮效率。但是,HEVC 的幀內預測算法依然有改善的空間,在這篇論文中,我們提出了利用渲染方法(inpainting method)改善幀內預測效果的方法。渲染方法的特點是更多的考慮了像素之間的相關性,相距越近的像素關聯性越強,因此這樣的算法能夠更好地保持預測區塊與參考邊界之間的連續性,在某些情況下獲得比原HEVC 預測算法更準確的預測。最後實驗結果表明,由HEVC 幀內預測方法和inpainting 預測方法結合性預測方法,比HEVC 幀內預測節省3.81%的位元率。
HEVC is the most recently established video coding standard based on H.264/AVC. There are many useful compression algorithms used in this standard and it could represent a video by less bitrate. HEVC added prediction modes in the intra frame prediction algorithm, by which HEVC could predict more precisely, and thus attain better compression efficiency than H.264/AVC. However, there are also other methods that could improve HEVC intra frame prediction. In this paper, we adopt the inpainting method to improve the HEVC intra prediction performance. The advantage of inpainting method is it considers the relativity between the neighbor pixels, the closer the pixels are, the more relative between them. So this method could preserve the continuity between the reference edge and the predicted block. In many circumstances, the inpainting method predict more precisely than the original HEVC intra frame prediction method. The experiment shows that, the hybrid algorithm by
both inpainting and original method could save about 3.81% bitrate than the original HEVC intra frame method.
[1] I. Richardson, H.264 and MPEG-4 video compression, Wiley Press, Dec.2003
[2] G. J. Sullivan, J. R. Ohm and W. J. Han, “Overview of the High Efficiency Video Coding (HEVC) Standard”, IEEE Trans on Circuits and Systems for Video Tech., Volume: 22, pp.1649-1668, Dec. 2012
[3] G. J. Sullivan and R. L. Baker, “Efficient Quadtree Coding of Images and Video”, IEEE Trans. on Image Processing, vol. 3, no. 3, pp. 327-331, Jan. 1994
[4] F. Bossen and B. Bross, “HEVC Complexity and Implementation Analysis”, IEEE Trans on Circuits and Systems for Video Tech., Volume: 22, pp.1685-1696, Dec. 2012
[5] B. Bross, S. Oudin, P. Helle, and etc., “Block Merging for Quadtree-based Partitioning in HEVC”, Proceedings of SPIE, vol. 8449, Aug. 2012
[6] J. Lainema, F. Bossen, W. J. Han and etc, “Intra Coding of the HEVC Standard”, IEEE Trans on Circuits and Systems for Video Tech., Volume: 22, pp.1792-1801, Dec. 2012
[7] D. Doshkov, P. N. Nya, H. Lakshman, and etc. “Towards Efficient Intra Prediction based on Image Inpainting Method”, Picture Coding Symposium (PCS), pp.470-473, Dec. 2010
[8] A. Criminisi, P. Perez, and K. Toyama, “Region Filling and Object Removal by Exemplar-based Image Inpainting”, IEEE Trans. on Image Precessing, vol. 13, no. 9, pp. 1200-1212, Sep. 2004.
[9] P. Nya, M. Koppel, D. Doshkov and etc., “Automatic Structure-Aware Inpainting for Complex Image Content”, Pros. ISVC, Las Vegas, NV, USA, pp. 1144-1156, Dec. 2008
[10] M. Bertalmio, G. Sapiro, and etc., “Image Inpainting”, Proc. ACM SIGGRAPH 2000, New Orleans, pp. 417-424, Jul. 2000
[11] V. Bastani, M. s. Helfroush, and K. Kasiri, “Image Compression based on Spatial Redundancy Removal and Image Inpainting”, Zhejiang University Press, co-published with Springer, pp. 91-100, Jan. 2010
[12] D. Liu, X. Sun, F. Wu, and etc., “Edge-oriented Uniform Intra Prediction”, IEEE TIP, vol. 17, no. 10, pp. 1827-1836, Oct. 2008
[13] X. Qi, T. Zhang, F. Ye and etc., “Intra Prediction with Enhanced Inpainting Method and Vector Prediction for HEVC”, IEEE International Conference on ICASSP, pp. 1217-1220, March 2012
[14] T. F. Chan and J. Shen, “Mathematical models for local nontexture inpaintings”, SIAM Journal on Applied Mathematics, pp. 1019-1043, 2001
[15] T. F. Chan and J. Shen, “Nontexture Inpainting by Curvature-driven Diffusions”, Journal of Visual Communication and Image Representation, vol. 12, no. 4, pp. 436-449, 2001
[16] C. Ballester, M. Bertalmio, and etc., “Filling-in by Joint Interpolation of Vector Fields and Gray Levels”, IEEE Trans. Image Precess., 10, pp. 1200-1211, 2001
[17] V. Caselles, J. M. Morel and C. Sbert, “An Axiomatic Approach to Image Interpolation”, IEEE Trans. Image Precessing, 7, pp. 376-386, 1998
[18] T. F. Chan, S. H. Kang and J. Shen, “Euler’s Elastica and Curvature-based Image Inpainting”, CAM Reprot 01-02, Department of Mathematics, UCLA, 2001
[19] M. Bertalmio, L. Vese, G. Sapiro and S. Osher, “Simultaneous Structure and Texture Image Inpainting”, IEEE Trans. Image Process., vol. 12, no. 8, pp. 882-889, Aug. 2003
[20] H. Grossauer, “A Combined PDE and texture Synthesis Approach to Inpainting”, in Proc. Eur. Conf. Comput. Vis. (ECCV’s04), pp. 214-224, 2004
[21] S. D. Rane, G. Sapiro, and M. Bertalmio, “Structure and Texture Filling-in of Missing Image Blocks in Wireless Transmission and Compression Applications”, IEEE Trans. Image Process., vol, 12, no. 3, pp. 296-303, Mar. 2003